Skip to main content

Advertisement

Log in

Novel B7-H4-mediated crosstalk between human non-Hodgkin lymphoma cells and tumor-associated macrophages leads to immune evasion via secretion of IL-6 and IL-10

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Non-Hodgkin lymphoma (NHL) is an incurable lymphoproliferative cancer, and patients with NHL have a poor prognosis. The present study explored the regulatory mechanism of expression and possible roles of the immunosuppressive B7-H4 molecule in human NHL. For functional studies, NHL-reactive T cell lines were generated via the isolation of allogeneic CD3+ T cells from healthy donors and repeated in vitro stimulation with irradiated NHL cells isolated from patients. B7-H4 was found to be distributed in NHL cells and tissues, and its surface protein expression levels were further upregulated by the incubation of NHL cells with interleukin (IL)-6, IL-10, or interferon-γ. Additionally, the supernatants of tumor-associated macrophages (tMφs) upregulated B7-H4 surface expression by producing IL-6 and IL-10. B7-H4 expressed in NHL cells inhibited the cytotoxic activity of NHL-reactive T cells. Conversely, the inhibition of B7-H4 in NHL cells promoted T cell immunity and sensitized NHL cells to cytolysis. Furthermore, tMφs induced B7-H4 promoted NHL cell evasion of the T cell immune response. In conclusion, this study shows that NHL-expressed B7-H4 is an important immunosuppressive factor that inhibits host anti-tumor immunity to NHL. Targeting tumor-expressed B7-H4 may thus provide a new treatment strategy for NHL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T lymphocyte

DLBCL:

Diffuse large B cell lymphoma

FasL:

Fas ligand

FL:

Follicular lymphoma

IFN:

Interferon

IL:

Interleukin

IgG:

Immunoglobulin G

LPS:

Lipopolysaccharide

Ly10:

OCI-Ly10

mAb:

Monoclonal antibody

M-CSF:

Macrophage colony-stimulating factor

MHC:

Major histocompatibility complex

Nal:

Nalmawa

NHL:

Non-Hodgkin lymphoma

nMφs:

Normal macrophages

PBMCs:

Peripheral blood mononuclear cells

PD:

Programmed death protein

PD-L:

Programmed death ligand

TGF:

Transforming growth factor

tMφs:

Tumor-associated macrophages

TNF:

Tumor necrosis factor

Tregs:

Regulatory T cells

VEGF:

Vascular endothelial growth factor

References

  1. Havranek O, Kleiblova P, Hojny J, Lhota F, Soucek P, Trneny M, Kleibl Z (2015) Association of Germline CHEK2 gene variants with risk and prognosis of Non-Hodgkin lymphoma. PLoS One 10:e0140819. doi:10.1371/journal.pone.0140819

    Article  PubMed  PubMed Central  Google Scholar 

  2. Glass S, Phan A, Williams JN, Flowers CR, Koff JL (2016) Integrating understanding of epidemiology and genomics in B-cell non-Hodgkin lymphoma as a pathway to novel management strategies. Discov Med 21:181–188

    PubMed  Google Scholar 

  3. Grover NS, Park SI (2015) Novel targeted agents in Hodgkin and non-Hodgkin lymphoma therapy. Pharmaceuticals (Basel) 8:607–636. doi:10.3390/ph8030607

    Article  CAS  Google Scholar 

  4. Stienen JJ, Hermens RP, Wennekes L et al (2015) Variation in guideline adherence in non-Hodgkin’s lymphoma care: impact of patient and hospital characteristics. BMC Cancer 15:578. doi:10.1186/s12885-015-1547-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zappasodi R, de Braud F, Di Nicola M (2015) Lymphoma immunotherapy: current status. Front Immunol 6:448. doi:10.3389/fimmu.2015.00448

    Article  PubMed  PubMed Central  Google Scholar 

  6. Germain C, Guillaudeux T, Galsgaard ED et al. (2015) Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin’s lymphomas dampening natural killer cell functions. Oncoimmunology 4:e1026503. doi:10.1080/2162402X.2015.1026503

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gabellier L, Cartron G (2016) Obinutuzumab for relapsed or refractory indolent non-Hodgkin’s lymphomas. Ther Adv Hematol 7:85–93. doi:10.1177/2040620715622613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang L, Qian J, Lu Y et al (2013) Immune evasion of mantle cell lymphoma: expression of B7-H1 leads to inhibited T-cell response to and killing of tumor cells. Haematologica 98:1458–1466. doi:10.3324/haematol.2012.071340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hollander N (2012) Immunotherapy for B-cell lymphoma: current status and prospective advances. Front Immunol 3:3. doi:10.3389/fimmu.2012.00003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sakamaki I, Qin H, Kwak LW (2011) Translational development of vaccination strategies in follicular NHL. Best Pract Res Clin Haematol 24:295–304. doi:10.1016/j.beha.2011.03.007

    Article  PubMed  Google Scholar 

  11. Schuster SJ, Neelapu SS, Gause BL et al (2011) Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J Clin Oncol 29:2787–2794. doi:10.1200/JCO.2010.33.3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kline J, Bishop MR (2015) Update on checkpoint blockade therapy for lymphoma. J Immunother Cancer 3:33. doi:10.1186/s40425-015-0079-8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bagley SJ, Bauml JM, Langer CJ (2015) PD-1/PD-L1 immune checkpoint blockade in non-small cell lung cancer. Clin Adv Hematol Oncol 13:676–683

    PubMed  Google Scholar 

  14. Westin JR, Chu F, Zhang M et al (2014) Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol 15:69–77. doi:10.1016/S1470-2045(13)70551-5

    Article  CAS  PubMed  Google Scholar 

  15. Choi IH, Zhu G, Sica GL et al (2003) Genomic organization and expression analysis of B7-H4, an immune inhibitory molecule of the B7 family. J Immunol 171:4650–4654

    Article  CAS  PubMed  Google Scholar 

  16. Sica GL, Choi IH, Zhu G et al (2003) B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18:849–861

    Article  CAS  PubMed  Google Scholar 

  17. Salceda S, Tang T, Kmet M, Munteanu A, Ghosh M, Macina R, Liu W, Pilkington G, Papkoff J (2005) The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp Cell Res 306:128–141. doi:10.1016/j.yexcr.2005.01.018

    Article  CAS  PubMed  Google Scholar 

  18. Hansen JD, Du Pasquier L, Lefranc MP, Lopez V, Benmansour A, Boudinot P (2009) The B7 family of immunoregulatory receptors: a comparative and evolutionary perspective. Mol Immunol 46:457–472. doi:10.1016/j.molimm.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Heng X, Lu Y, Cai Z, Yi Q, Che F (2016) Could B7-H4 serve as a target to activate anti-cancer immunity? Int Immunopharmacol 38:97–103. doi:10.1016/j.intimp.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  20. Cheng C, Qu QX, Shen Y, Lv YT, Zhu YB, Zhang XG, Huang JA (2011) Overexpression of B7-H4 in tumor infiltrated dendritic cells. J Immunoassay Immunochem 32:353–364. doi:10.1080/15321819.2011.578190

    Article  CAS  PubMed  Google Scholar 

  21. Seliger B, Quandt D (2012) The expression, function, and clinical relevance of B7 family members in cancer. Cancer Immunol Immunother 61:1327–1341. doi:10.1007/s00262-012-1293-6

    Article  CAS  PubMed  Google Scholar 

  22. Jeon H, Ohaegbulam KC, Abadi YM, Zang X (2013) B7x and myeloid-derived suppressor cells in the tumor microenvironment: a tale of two cities. Oncoimmunology 2:e24744. doi:10.4161/onci.24744

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arigami T, Uenosono Y, Ishigami S, Hagihara T, Haraguchi N, Natsugoe S (2011) Clinical significance of the B7-H4 coregulatory molecule as a novel prognostic marker in gastric cancer. World J Surg 35:2051–2057. doi:10.1007/s00268-011-1186-4

    Article  PubMed  Google Scholar 

  24. Shi H, Ji M, Wu J et al (2014) Serum B7-H4 expression is a significant prognostic indicator for patients with gastric cancer. World J Surg Oncol 12:188. doi:10.1186/1477-7819-12-188

    Article  PubMed  PubMed Central  Google Scholar 

  25. Geng Y, Wang H, Lu C, Li Q, Xu B, Jiang J, Wu C (2015) Expression of costimulatory molecules B7-H1, B7-H4 and Foxp3(+) Tregs in gastric cancer and its clinical significance. Int J Clin Oncol 20:273–281. doi:10.1007/s10147-014-0701-7

    Article  CAS  PubMed  Google Scholar 

  26. Matsunaga T, Saito H, Ikeguchi M (2011) Increased B7-H1 and B7-H4 expressions on circulating monocytes and tumor-associated macrophages are involved in immune evasion in patients with gastric cancer. Yonago Acta Med 54:1–10.

    PubMed  PubMed Central  Google Scholar 

  27. Jiang J, Zhu Y, Wu C et al (2010) Tumor expression of B7-H4 predicts poor survival of patients suffering from gastric cancer. Cancer Immunol Immunother 59:1707–1714. doi:10.1007/s00262-010-0900-7

    Article  CAS  PubMed  Google Scholar 

  28. Zhao LW, Li C, Zhang RL, Xue HG, Zhang FX, Zhang F, Gai XD (2014) B7-H1 and B7-H4 expression in colorectal carcinoma: correlation with tumor FOXP3(+) regulatory T-cell infiltration. Acta Histochem 116:1163–1168. doi:10.1016/j.acthis.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Sun J, Zhao H et al. (2014) The coexpression and clinical significance of costimulatory molecules B7-H1, B7-H3, and B7-H4 in human pancreatic cancer. Onco Targets Ther 7:1465–1472. doi:10.2147/OTT.S66809

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mugler KC, Singh M, Tringler B, Torkko KC, Liu W, Papkoff J, Shroyer KR (2007) B7-h4 expression in a range of breast pathology: correlation with tumor T-cell infiltration. Appl Immunohistochem Mol Morphol 15:363–370. doi:10.1097/01.pai.0000213159.79557.71

    Article  CAS  PubMed  Google Scholar 

  31. Li ZY, Zhang XH, Chen Y, Guo JG, Sai K, Yang QY, Chen ZP, Mou YG (2013) Clinical significance of B7-H4 expression in matched non-small cell lung cancer brain metastases and primary tumors. Oncol Targets Ther 6:869–875. doi:10.2147/OTT.S48085

    Article  CAS  Google Scholar 

  32. Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, Wang X (2006) B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer 53:143–151. doi:10.1016/j.lungcan.2006.05.012

    Article  PubMed  Google Scholar 

  33. Zhu J, Chu BF, Yang YP, Zhang SL, Zhuang M, Lu WJ, Liu YB (2013) B7-H4 expression is associated with cancer progression and predicts patient survival in human thyroid cancer. Asian Pac J Cancer Prev 14:3011–3015

    Article  PubMed  Google Scholar 

  34. Xu Y, Zhu S, Song M, Liu W, Liu C, Li Y, Wang M (2014) B7-H4 expression and its role in interleukin-2/interferon treatment of clear cell renal cell carcinoma. Oncol Lett 7:1474–1478. doi:10.3892/ol.2014.1961

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung SG, Choi KU, Lee SD, Lee ZZ, Chung MK (2011) The relationship between B7-H4 expression and clinicopathological characteristics in clinical stage T1 conventional renal cell carcinoma. Korean J Urol 52:90–95. doi:10.4111/kju.2011.52.2.90

    Article  PubMed  PubMed Central  Google Scholar 

  36. Krambeck AE, Thompson RH, Dong H et al (2006) B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci USA 103:10391–10396. doi:10.1073/pnas.0600937103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang L, Wu H, Lu D et al (2013) The costimulatory molecule B7-H4 promote tumor progression and cell proliferation through translocating into nucleus. Oncogene 32:5347–5358. doi:10.1038/onc.2012.600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quandt D, Fiedler E, Boettcher D, Marsch W, Seliger B (2011) B7-h4 expression in human melanoma: its association with patients’ survival and antitumor immune response. Clin Cancer Res 17:3100–3111. doi:10.1158/1078-0432.CCR-10-2268

    Article  CAS  PubMed  Google Scholar 

  39. Zhang C, Li Y, Wang Y (2015) Diagnostic value of serum B7-H4 for hepatocellular carcinoma. J Surg Res 197:301–306. doi:10.1016/j.jss.2015.04.034

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Wang T, Xu M, Xiao L, Luo Y, Huang W, Zhang Y, Geng W (2014) B7-H4 overexpression impairs the immune response of T cells in human cervical carcinomas. Hum Immunol 75:1203–1209. doi:10.1016/j.humimm.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  41. Maskey N, Li K, Hu M et al (2014) Impact of neoadjuvant chemotherapy on lymphocytes and co-inhibitory B7-H4 molecule in gastric cancer: low B7-H4 expression associates with favorable prognosis. Tumour Biol 35:11837–11843. doi:10.1007/s13277-014-2410-2

    Article  CAS  PubMed  Google Scholar 

  42. Xu H, Chen X, Tao M, Chen K, Chen C, Xu G, Li W, Yuan S, Mao Y (2016) B7-H3 and B7-H4 are independent predictors of a poor prognosis in patients with pancreatic cancer. Oncol Lett 11:1841–1846. doi:10.3892/ol.2016.4128

    PubMed  PubMed Central  Google Scholar 

  43. Chen X, Wang L, Wang W, Zhao L, Shan B (2016) B7-H4 facilitates proliferation of esophageal squamous cell carcinoma cells through promoting interleukin-6/signal transducer and activator of transcriotion 3 pathway activation. Cancer Sci 107:944–954. doi:10.1111/cas.12949

    Google Scholar 

  44. Abadi YM, Jeon H, Ohaegbulam KC et al (2013) Host b7x promotes pulmonary metastasis of breast cancer. J Immunol 190:3806–3814. doi:10.4049/jimmunol.1202439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sabattini E, Bacci F, Sagramoso C, Pileri SA (2010) WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview. Pathologica 102:83–87

    CAS  PubMed  Google Scholar 

  46. Wang L, Zhao Y, Qian J et al (2013) Toll-like receptor-4 signaling in mantle cell lymphoma: effects on tumor growth and immune evasion. Cancer 119:782–791. doi:10.1002/cncr.27792

    Article  CAS  PubMed  Google Scholar 

  47. Kikuchi T, Crystal RG (2001) Antigen-pulsed dendritic cells expressing macrophage-derived chemokine elicit Th2 responses and promote specific humoral immunity. J Clin Invest 108:917–927. doi:10.1172/JCI11564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng Y, Cai Z, Wang S et al (2009) Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114:3625–3628. doi:10.1182/blood-2009-05-220285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zindl CL, Chaplin DD (2010) Immunology. Tumor immune evasion. Science 328:697–698. doi:10.1126/science.1190310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q (2006) Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood 107:2432–2439. doi:10.1182/blood-2005-06-2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299. doi:10.1038/86297

    Article  CAS  PubMed  Google Scholar 

  52. Freedman A, Neelapu SS, Nichols C et al (2009) Placebo-controlled phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte-macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J Clin Oncol 27:3036–3043. doi:10.1200/JCO.2008.19.8903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laurent C, Charmpi K, Gravelle P et al. (2015) Several immune escape patterns in non-Hodgkin’s lymphomas. Oncoimmunology 4:e1026530. doi:10.1080/2162402X.2015.1026530

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen C, Qu QX, Shen Y, Mu CY, Zhu YB, Zhang XG, Huang JA (2012) Induced expression of B7-H4 on the surface of lung cancer cell by the tumor-associated macrophages: a potential mechanism of immune escape. Cancer Lett 317:99–105. doi:10.1016/j.canlet.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  55. Kryczek I, Wei S, Zou L, Zhu G, Mottram P, Xu H, Chen L, Zou W (2006) Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol 177:40–44

    Article  CAS  PubMed  Google Scholar 

  56. Kryczek I, Zou L, Rodriguez P et al (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203:871–881. doi:10.1084/jem.20050930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mirza N, Gabrilovich D (2007) Comment on “Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells”. J Immunol 178:4705–4706 (author reply 4706)

    Article  CAS  PubMed  Google Scholar 

  58. Kagi D, Vignaux F, Ledermann B, Burki K, Depraetere V, Nagata S, Hengartner H, Golstein P (1994) Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265:528–530

    Article  CAS  PubMed  Google Scholar 

  59. Kojima H, Shinohara N, Hanaoka S et al (1994) Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity 1:357–364

    Article  CAS  PubMed  Google Scholar 

  60. Rook GA, Dalgleish A (2011) Infection, immunoregulation, and cancer. Immunol Rev 240:141–159. doi:10.1111/j.1600-065X.2010.00987.x

    Article  CAS  PubMed  Google Scholar 

  61. Kryczek I, Wei S, Zhu G, Myers L, Mottram P, Cheng P, Chen L, Coukos G, Zou W (2007) Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res 67:8900–8905. doi:10.1158/0008-5472.CAN-07-1866

    Article  CAS  PubMed  Google Scholar 

  62. Morantz RA, Wood GW, Foster M, Clark M, Gollahon K (1979) Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg 50:305–311. doi:10.3171/jns.1979.50.3.0305

    Article  CAS  PubMed  Google Scholar 

  63. Farinha P, Masoudi H, Skinnider BF et al (2005) Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 106:2169–2174. doi:10.1182/blood-2005-04-1565

    Article  CAS  PubMed  Google Scholar 

  64. Leich E, Hartmann EM, Burek C, Ott G, Rosenwald A (2007) Diagnostic and prognostic significance of gene expression profiling in lymphomas. APMIS 115:1135–1146. doi:10.1111/j.1600-0463.2007.apm_867.xml.x

    Article  CAS  PubMed  Google Scholar 

  65. Alvaro T, Lejeune M, Camacho FI et al (2006) The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma. Haematologica 91:1605–1612

    CAS  PubMed  Google Scholar 

  66. Assaf C, Hwang ST (2016) Mac attack: macrophages as key drivers of cutaneous T-cell lymphoma pathogenesis. Exp Dermatol 25:105–106. doi:10.1111/exd.12894

    Article  PubMed  Google Scholar 

  67. Shen L, Li H, Shi Y, Wang D, Gong J, Xun J, Zhou S, Xiang R, Tan X (2016) M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in diffuse large B-cell lymphoma. Sci Rep 6:30347. doi:10.1038/srep30347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifeng Du or Lijuan Wang.

Ethics declarations

Funding

This work was supported by Funds for Young Scholars of the National Natural Science Foundation of China (Grant No. 81402353), the Medical Health Science and Technology Development Plan of Shandong Province (Grant No. 2014WS0287), the China Postdoctoral Science Foundation (Grant No. 2015M580594), the Postdoctoral Innovation Foundation of Shandong Province (Grant No. 201502008), the Key Research Project program of Shandong Province (Grant No. 2016GSF201056), and the Natural Science Foundation of Shandong Province (Grant No. ZR2014HM077).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, F., Heng, X., Zhang, H. et al. Novel B7-H4-mediated crosstalk between human non-Hodgkin lymphoma cells and tumor-associated macrophages leads to immune evasion via secretion of IL-6 and IL-10. Cancer Immunol Immunother 66, 717–729 (2017). https://doi.org/10.1007/s00262-017-1961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1961-7

Keywords

Navigation