Skip to main content

Advertisement

Log in

Dendritic cell rehab: new strategies to unleash therapeutic immunity in ovarian cancer

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immune-based therapies that induce remarkable and durable responses against melanoma and lung cancer have unfortunately demonstrated limited success in ovarian cancer patients. This is likely due to the exceptional immunoregulatory nature of ovarian tumors, which employ numerous strategies to effectively suppress anti-tumor immunity. Here, we summarize a decade of research indicating that ovarian cancers possess an exquisite capacity to subvert the activity of host dendritic cells (DCs) as a key mechanism to impede the development and maintenance of protective T cell-based immune responses. Identifying, understanding, and disabling the precise mechanisms promoting DC dysfunction in ovarian cancer are, therefore, fundamental requirements for devising the next generation of successful immunotherapies against this devastating malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

4-HNE:

4-Hydroxynonenal

BMDC:

Bone marrow-derived DC

CCL3:

Chemokine (C-C motif) ligand 3

CCL5:

Chemokine (C-C motif) ligand 5

CCR6:

Chemokine receptor 6

cDC:

Conventional DCs

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9

CTLA4:

Cytotoxic T-lymphocyte-associated antigen 4

DC:

Dendritic cell

ER:

Endoplasmic reticulum

IFN:

Interferon

IRE1α:

Inositol-requiring enzyme 1

miRNA:

MicroRNA

MyD88:

Myeloid differentiation primary response gene 88

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed cell death protein ligand 1

pDC:

Plasmacytoid dendritic cells

PEI:

Polyethylenimine

PGE2:

Prostaglandin E2

PIGF-1:

Placenta growth factor

ROS:

Reactive oxygen species

SATB1:

Special AT-rich sequence-binding protein-1

sgRNA:

Single-guide RNA

siRNA:

Small-interfering RNA

tDC:

Tumor-associated DC

TGF-β:

Tumor growth factor -β

Th1:

T helper 1

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

VEGF-A:

Vascular Endothelial Growth Factor-A

XBP1:

X-box-binding protein 1

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Matulonis UA et al (2016) Ovarian cancer. Nat Rev Dis Primers 2:16061

    Article  PubMed  Google Scholar 

  3. Giornelli GH (2016) Management of relapsed ovarian cancer: a review. SpringerPlus 5(1):1197

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang L et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213

    Article  CAS  PubMed  Google Scholar 

  5. Nesbeth Y et al (2009) CCL5-mediated endogenous antitumor immunity elicited by adoptively transferred lymphocytes and dendritic cell depletion. Cancer Res 69(15):6331–6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nesbeth YC et al (2010) CD4 + T cells elicit host immune responses to MHC class II-negative ovarian cancer through CCL5 secretion and CD40-mediated licensing of dendritic cells. J Immunol 184(10):5654–5662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conejo-Garcia JR et al (2004) Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10(9):950–958

    Article  CAS  PubMed  Google Scholar 

  8. Barnett B et al (2005) Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 54(6):369–377

    Article  CAS  PubMed  Google Scholar 

  9. Curiel TJ et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9(5):562–567

    Article  CAS  PubMed  Google Scholar 

  10. Huarte E et al (2008) Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity. Cancer Res 68(18):7684–7691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cubillos-Ruiz JR et al (2009) Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 119(8):2231–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214

    Article  CAS  PubMed  Google Scholar 

  14. Morgan RA et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dudley ME et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hamanishi J et al (2015) Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 33(34):4015–4022

    Article  CAS  PubMed  Google Scholar 

  17. Kershaw MH et al (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kandalaft LE et al (2013) Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2(1):e22664

    Article  PubMed  PubMed Central  Google Scholar 

  19. Geissmann F et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mildner A, Jung S (2014) Development and function of dendritic cell subsets. Immunity 40(5):642–656

    Article  CAS  PubMed  Google Scholar 

  21. Takizawa H, Boettcher S, Manz MG (2012) Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119(13):2991–3002

    Article  CAS  PubMed  Google Scholar 

  22. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Conejo-Garcia JR, Rutkowski MR, Cubillos-Ruiz JR (2016) State-of-the-art of regulatory dendritic cells in cancer. Pharmacol Ther 164:97–104

    Article  CAS  PubMed  Google Scholar 

  25. Scarlett UK et al (2009) In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res 69(18):7329–7337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scarlett UK et al (2012) Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med 209(3):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Munder M, Arginase (2009) an emerging key player in the mammalian immune system. Br J Pharmacol 158(3):638–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cubillos-Ruiz JR et al (2010) CD277 is a negative co-stimulatory molecule universally expressed by ovarian cancer microenvironmental cells. Oncotarget 1(5):329–338

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu HT, Gao P (2016) The roles of microRNAs related with progression and metastasis in human cancers. Tumor Biol 37(12):15383–15397. doi:10.1007/s13277-016-5436-9

    Google Scholar 

  30. Rodriguez A et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cubillos-Ruiz JR et al (2012) Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res 72(7):1683–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zonari E et al (2013) A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood 122(2):243–252

    Article  CAS  PubMed  Google Scholar 

  33. Tesone AJ et al (2016) Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells. Cell Rep 14(7):1774–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cubillos-Ruiz JR et al (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161(7):1527–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12(9):703–719

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida H et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  CAS  PubMed  Google Scholar 

  37. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang CH et al (2014) Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest 124(6):2585–2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X et al (2014) XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508(7494):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Auf G et al (2010) Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA 107(35):15553–15558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dalton LE et al (2013) The endoplasmic reticulum stress marker CHOP predicts survival in malignant mesothelioma. Br J Cancer 108(6):1340–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davies MP et al (2008) Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int J Cancer 123(1):85–88

    Article  CAS  PubMed  Google Scholar 

  43. Matsuo K et al (2013) The endoplasmic reticulum stress marker, glucose-regulated protein-78 (GRP78) in visceral adipocytes predicts endometrial cancer progression and patient survival. Gynecol Oncol 128(3):552–559

    Article  CAS  PubMed  Google Scholar 

  44. Herber DL et al (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16(8):880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Condamine T et al (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 1(2):aaf8943

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schoenberger SP et al (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393(6684):480–483

    Article  CAS  PubMed  Google Scholar 

  47. Bennett SR et al (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393(6684):478–480

    Article  CAS  PubMed  Google Scholar 

  48. Beatty GL et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vonderheide RH et al (2013) CD40 immunotherapy for pancreatic cancer. Cancer Immunol Immunother 62(5):949–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marigo I et al (2016) T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell 30(3):377–390

    Article  CAS  PubMed  Google Scholar 

  51. Beatty GL et al (2013) A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res 19(22):6286–6295

    Article  CAS  PubMed  Google Scholar 

  52. Rosenfeld MR et al (2010) A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro Oncol 12(10):1071–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. CMLS Cell Mol Life Sci 66(17):2873–2896

    Article  CAS  PubMed  Google Scholar 

  54. Cubillos-Ruiz JR, Fiering S, Conejo-Garcia JR (2009) Nanomolecular targeting of dendritic cells for ovarian cancer therapy. Future Oncol 5(8):1189–1192

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31(7):397–405

  56. Platt RJ et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our research has been supported by the John H. Copenhaver, Jr. and William H. Thomas, MD 1952 Fellowship of the Geisel School of Medicine at Dartmouth (Juan R. Cubillos-Ruiz), the Irvington Institute Fellowship Program of the Cancer Research Institute (Juan R. Cubillos-Ruiz), the Ann Schreiber Mentored Investigator Award of the Ovarian Cancer Research Fund Alliance (Juan R. Cubillos-Ruiz), and the Ovarian Cancer Academy—Early Career Investigator Award of the Department of Defense (Juan R. Cubillos-Ruiz). We apologize to colleagues whose work was not cited in this review due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. Cubillos-Ruiz.

Ethics declarations

Conflict of interest

Juan R. Cubillos-Ruiz is co-founder and scientific advisor for Quentis Therapeutics, Inc. The other authors declare no conflict of interest.

Additional information

This paper is a Focussed Research Review based on a presentation given at the conference Regulatory Myeloid Suppressor Cells: From Basic Discovery to Therapeutic Application which was hosted by the Wistar Institute in Philadelphia, PA, USA, 16th–19th June, 2016. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, CS., Teran-Cabanillas, E. & Cubillos-Ruiz, J.R. Dendritic cell rehab: new strategies to unleash therapeutic immunity in ovarian cancer. Cancer Immunol Immunother 66, 969–977 (2017). https://doi.org/10.1007/s00262-017-1958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1958-2

Keywords

Navigation