Skip to main content

Advertisement

Log in

Surface biotinylation of cytotoxic T lymphocytes for in vivo tracking of tumor immunotherapy in murine models

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Currently, there is no stable and flexible method to label and track cytotoxic T lymphocytes (CTLs) in vivo in CTL immunotherapy. We aimed to evaluate whether the sulfo-hydroxysuccinimide (NHS)-biotin–streptavidin (SA) platform could chemically modify the cell surface of CTLs for in vivo tracking. CD8+ T lymphocytes were labeled with sulfo-NHS-biotin under different conditions and then incubated with SA–Alexa647. Labeling efficiency was proportional to sulfo-NHS-biotin concentration. CD8+ T lymphocytes could be labeled with higher efficiency with sulfo-NHS-biotin in DPBS than in RPMI (P < 0.05). Incubation temperature was not a key factor. CTLs maintained sufficient labeling for at least 72 h (P < 0.05), without altering cell viability. After co-culturing labeled CTLs with mouse glioma stem cells (GSCs) engineered to present biotin on their surface, targeting CTLs could specifically target biotin-presenting GSCs and inhibited cell proliferation (P < 0.01) and tumor spheres formation. In a biotin-presenting GSC brain tumor model, targeting CTLs could be detected in biotin-presenting gliomas in mouse brains but not in the non-tumor-bearing contralateral hemispheres (P < 0.05). In vivo fluorescent molecular tomography imaging in a subcutaneous U87 mouse model confirmed that targeting CTLs homed in on the biotin-presenting U87 tumors but not the control U87 tumors. PET imaging with 89Zr-deferoxamine-biotin and SA showed a rapid clearance of the PET signal over 24 h in the control tumor, while only minimally decreased in the targeted tumor. Thus, sulfo-NHS-biotin–SA labeling is an efficient method to noninvasively track the migration of adoptive transferred CTLs and does not alter CTL viability or interfere with CTL-mediated cytotoxic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BAP-TM:

Biotin acceptor peptide-transmembrane

BLI:

Bioluminescence imaging

CT:

Computed tomography

CTL:

Cytotoxic T lymphocyte

DPBS:

Dulbecco’s phosphate-buffered saline

FMT:

Fluorescent molecular tomography

Gluc:

Gaussia luciferase

GSC:

Glioma stem cell

HPLC:

High-performance liquid chromatography

IGFP:

Inverted green fluorescent protein

IVM:

Intravital microscopy

LCMS:

Liquid chromatography mass spectroscopy

NHS:

N-hydroxysuccinimide

NIR:

Near infrared

PET:

Positron emission tomography

SA:

Streptavidin

SEM:

Standard error of measurement

TLC:

Thin liquid chromatography

Zr:

Zirconium

References

  1. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68. doi:10.1126/science.aaa4967

    Article  CAS  PubMed  Google Scholar 

  2. de Aquino MT, Malhotra A, Mishra MK, Shanker A (2015) Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 166(2):117–133. doi:10.1016/j.imlet.2015.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vigneron N (2015) Human tumor antigens and cancer immunotherapy. Biomed Res Int 2015:948501. doi:10.1155/2015/948501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shapiro EM, Medford-Davis LN, Fahmy TM, Dunbar CE, Koretsky AP (2007) Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol Imaging 2(3):147–153. doi:10.1002/cmmi.134

    Article  CAS  PubMed  Google Scholar 

  5. Lazovic J, Jensen MC, Ferkassian E, Aguilar B, Raubitschek A, Jacobs RE (2008) Imaging immune response in vivo: cytolytic action of genetically altered T cells directed to glioblastoma multiforme. Clin Cancer Res 14(12):3832–3839. doi:10.1158/1078-0432.CCR-07-5067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arbab AS, Janic B, Jafari-Khouzani K, Iskander AS, Kumar S, Varma NR, Knight RA, Soltanian-Zadeh H, Brown SL, Frank JA (2010) Differentiation of glioma and radiation injury in rats using in vitro produce magnetically labeled cytotoxic T-cells and MRI. PLoS ONE 5(2):e9365. doi:10.1371/journal.pone.0009365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M, Romero P, Swirski FK, Weissleder R (2007) In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci USA 104(30):12457–12461. doi:10.1073/pnas.0704460104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doubrovin MM, Doubrovina ES, Zanzonico P, Sadelain M, Larson SM, O’Reilly RJ (2007) In vivo imaging and quantitation of adoptively transferred human antigen-specific T cells transduced to express a human norepinephrine transporter gene. Cancer Res 67(24):11959–11969. doi:10.1158/0008-5472.CAN-07-1250

    Article  CAS  PubMed  Google Scholar 

  9. Shu CJ, Radu CG, Shelly SM, Vo DD, Prins R, Ribas A, Phelps ME, Witte ON (2009) Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 21(2):155–165. doi:10.1093/intimm/dxn133

    Article  CAS  PubMed  Google Scholar 

  10. Charo J, Perez C, Buschow C, Jukica A, Czeh M, Blankenstein T (2011) Visualizing the dynamic of adoptively transferred T cells during the rejection of large established tumors. Eur J Immunol 41(11):3187–3197. doi:10.1002/eji.201141452

    Article  CAS  PubMed  Google Scholar 

  11. Du X, Wang X, Ning N, Xia S, Liu J, Liang W, Sun H, Xu Y (2012) Dynamic tracing of immune cells in an orthotopic gastric carcinoma mouse model using near-infrared fluorescence live imaging. Exp Ther Med 4(2):221–225. doi:10.3892/etm.2012.579

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320. doi:10.1038/nbt1074

    Article  CAS  PubMed  Google Scholar 

  13. Whitley MJ, Weissleder R, Kirsch DG (2015) Tailoring adjuvant radiation therapy by intraoperative imaging to detect residual cancer. Semin Radiat Oncol 25(4):313–321. doi:10.1016/j.semradonc.2015.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schols RM, Connell NJ, Stassen LP (2015) Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg 39(5):1069–1079. doi:10.1007/s00268-014-2911-6

    Article  PubMed  Google Scholar 

  15. Ballou B, Ernst LA, Waggoner AS (2005) Fluorescence imaging of tumors in vivo. Curr Med Chem 12(7):795–805

    Article  CAS  PubMed  Google Scholar 

  16. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  PubMed  Google Scholar 

  17. Swirski FK, Berger CR, Figueiredo JL, Mempel TR, von Andrian UH, Pittet MJ, Weissleder R (2007) A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS ONE 2(10):e1075. doi:10.1371/journal.pone.0001075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang W, Ke S, Wu Q, Charnsangavej C, Gurfinkel M, Gelovani JG, Abbruzzese JL, Sevick-Muraca EM, Li C (2004) Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts. Mol Imaging 3(4):343–351. doi:10.1162/1535350042973481

    Article  CAS  PubMed  Google Scholar 

  19. Houston JP, Ke S, Wang W, Li C, Sevick-Muraca EM (2005) Quality analysis of in vivo near-infrared fluorescence and conventional gamma images acquired using a dual-labeled tumor-targeting probe. J Biomed Opt 10(5):054010. doi:10.1117/1.2114748

    Article  CAS  PubMed  Google Scholar 

  20. Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, Li C (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 63(22):7870–7875

    CAS  PubMed  Google Scholar 

  21. Gottschalk S, Edwards OL, Sili U, Huls MH, Goltsova T, Davis AR, Heslop HE, Rooney CM (2003) Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood 101(5):1905–1912. doi:10.1182/blood-2002-05-1514

    Article  CAS  PubMed  Google Scholar 

  22. Kwon S, Ke S, Houston JP, Wang W, Wu Q, Li C, Sevick-Muraca EM (2005) Imaging dose-dependent pharmacokinetics of an RGD-fluorescent dye conjugate targeted to alpha v beta 3 receptor expressed in Kaposi’s sarcoma. Mol Imaging 4(2):75–87

    PubMed  Google Scholar 

  23. Zhang W, Fulci G, Wakimoto H, Cheema TA, Buhrman JS, Jeyaretna DS, Stemmer Rachamimov AO, Rabkin SD, Martuza RL (2013) Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia 15(6):591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tannous BA, Grimm J, Perry KF, Chen JW, Weissleder R, Breakefield XO (2006) Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat Methods 3(5):391–396. doi:10.1038/nmeth875

    Article  CAS  PubMed  Google Scholar 

  25. Niers JM, Chen JW, Weissleder R, Tannous BA (2011) Enhanced in vivo imaging of metabolically biotinylated cell surface reporters. Anal Chem 83(3):994–999. doi:10.1021/ac102758m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chung E, Yamashita H, Au P, Tannous BA, Fukumura D, Jain RK (2009) Secreted Gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE 4(12):e8316. doi:10.1371/journal.pone.0008316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Foster AE, Kwon S, Ke S, Lu A, Eldin K, Sevick-Muraca E, Rooney CM (2008) In vivo fluorescent optical imaging of cytotoxic T lymphocyte migration using IRDye800CW near-infrared dye. Appl Opt 47(31):5944–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Youniss FM, Sundaresan G, Graham LJ, Wang L, Berry CR, Dewkar GK, Jose P, Bear HD, Zweit J (2014) Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling. PLoS ONE 9(10):e109162. doi:10.1371/journal.pone.0109162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Institute of Health (R01-NS070835 and R01-NS072167), National Natural Science Foundation of China (Grant 81271633). We thank the Memorial Sloan Kettering Cancer Center for providing [89Zr]Zr-oxalate.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenwei Yao or John W. Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Anning Li and Yue Wu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Wu, Y., Linnoila, J. et al. Surface biotinylation of cytotoxic T lymphocytes for in vivo tracking of tumor immunotherapy in murine models. Cancer Immunol Immunother 65, 1545–1554 (2016). https://doi.org/10.1007/s00262-016-1911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1911-9

Keywords

Navigation