Skip to main content

Advertisement

Log in

Immunobiology and immunosurveillance in patients with intraductal papillary mucinous neoplasms (IPMNs), premalignant precursors of pancreatic adenocarcinomas

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Premalignant lesions for many cancers have been identified, and efforts are currently directed toward identification of antigens expressed on these lesions that would provide suitable targets for vaccines for cancer prevention. Intraductal papillary mucinous neoplasms (IPMNs) are premalignant pancreatic cysts of which a subset has the potential to progress to cancer. Currently, there are no validated predictive markers for progression to malignancy. We hypothesized that the presence or absence of immune surveillance of these lesions would be one such factor. Here we show that the tumor antigen MUC1, which is abnormally expressed on pancreatic cancer and is a target for cancer immunosurveillance, is also abnormally expressed on premalignant IPMN. We show that some IPMN patients make MUC1-specific IgG. Moreover, we show evidence of CD4 and CD8 T cell infiltration into IPMN areas of high dysplasia suggesting an ongoing immune response within the lesions. We also found, however, increased levels of circulating myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in some IPMN patients as well as evidence of T cell exhaustion. Further studies correlating immunosurveillance or immunosuppression with IPMN progression to malignancy will help define the immune response as a biomarker of risk, leading potentially to a vaccine to boost spontaneous immunity and prevent progression to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T cell

IFN-g:

Interferon gamma

IL-4:

Interleukin-4

IPMN:

Intraductal papillary mucinous neoplasm(s)

LAG-3:

Lymphocyte-activated gene-3

MDSC:

Myeloid-derived suppressor cell

MUC1:

Mucin 1

PBMC:

Peripheral blood mononuclear cell

PD-1:

Programed cell death protein-1

TIM-3:

T cell immunoglobulin and mucin-containing protein-3

Treg:

Regulatory T cell

References

  1. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lipson EJ, Drake CG (2011) Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 17(22):6958–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ledford H (2013) Immunotherapy’s cancer remit widens. Nature 497(7451):544

    CAS  PubMed  Google Scholar 

  5. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61(12):4756–4760

    CAS  PubMed  Google Scholar 

  7. Whiteside TL (2014) Induced regulatory T cells in inhibitory microenvironments created by cancer. Expert Opin Biol Ther 14(10):1411–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woodford D, Johnson SD, De Costa AM, Young MR (2014) An inflammatory cytokine milieu is prominent in premalignant oral lesions, but subsides when lesions progress to squamous cell carcinoma. J Clin Cell Immunol 5(3):230. doi:10.4172/2155-9899.1000230

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shi C, Hruban RH (2012) Intraductal papillary mucinous neoplasm. Hum Pathol 43(1):1–16

    Article  PubMed  Google Scholar 

  10. Klibansky DA, Reid-Lombardo KM, Gordon SR, Gardner TB (2012) The clinical relevance of the increasing incidence of intraductal papillary mucinous neoplasm. Clin Gastroenterol Hepatol 10(5):555–558

    Article  PubMed  Google Scholar 

  11. Tanaka M (2015) International consensus on the management of intraductal papillary mucinous neoplasm of the pancreas. Ann Transl Med 3(19):286

    PubMed  PubMed Central  Google Scholar 

  12. Dakubo GD, Jakupciak JP, Birch-Machin MA, Parr RL (2007) Clinical implications and utility of field cancerization. Cancer Cell Int 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Matthaei H, Norris AL, Tsiatis AC, Olino K, Hong SM, dal Molin M, Goggins MG, Canto M, Horton KM, Jackson KD, Capelli P, Zamboni G, Bortesi L, Furukawa T, Egawa S, Ishida M, Ottomo S, Unno M, Motoi F, Wolfgang CL, Edil BH, Cameron JL, Eshleman JR, Schulick RD, Maitra A, Hruban RH (2012) Clinicopathological characteristics and molecular analyses of multifocal intraductal papillary mucinous neoplasms of the pancreas. Ann Surg 255(2):326–333

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ (2004) MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82:249–293

    Article  CAS  PubMed  Google Scholar 

  15. Kimura T, Finn OJ (2013) MUC1 immunotherapy is here to stay. Expert Opin Biol Ther 13(1):35–49

    Article  CAS  PubMed  Google Scholar 

  16. Barnd DL, Lan MS, Metzgar RS, Finn OJ (1989) Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc Natl Acad Sci USA 86(18):7159–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jerome KR, Barnd DL, Bendt KM, Boyer CM, Taylor-Papadimitriou J, McKenzie IF, Bast RC Jr, Finn OJ (1991) Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res 51(11):2908–2916

    CAS  PubMed  Google Scholar 

  18. Ioannides CG, Fisk B, Jerome KR, Irimura T, Wharton JT, Finn OJ (1993) Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J Immunol 151(7):3693–3703

    CAS  PubMed  Google Scholar 

  19. Hamanaka Y, Suehiro Y, Fukui M, Shikichi K, Imai K, Hinoda Y (2003) Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int J Cancer 103(1):97–100

    Article  CAS  PubMed  Google Scholar 

  20. Pinheiro SP, Hankinson SE, Tworoger SS, Rosner BA, McKolanis JR, Finn OJ, Cramer DW (2010) Anti-MUC1 antibodies and ovarian cancer risk: prospective data from the Nurses’ Health Studies. Cancer Epidemiol Biomarkers Prev 19(6):1595–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Mensdorff-Pouilly S, Verstraeten AA, Kenemans P, Snijdewint FG, Kok A, Van Kamp GJ, Paul MA, Van Diest PJ, Meijer S, Hilgers J (2000) Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J Clin Oncol 18(3):574–583

    Google Scholar 

  22. Ajioka Y, Watanabe H, Jass JR (1997) MUC1 and MUC2 mucins in flat and polypoid colorectal adenomas. J Clin Pathol 50(5):417–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beatty PL, Plevy SE, Sepulveda AR, Finn OJ (2007) Cutting edge: transgenic expression of human MUC1 in IL-10-/- mice accelerates inflammatory bowel disease and progression to colon cancer. J Immunol 179(2):735–739

    Article  CAS  PubMed  Google Scholar 

  24. Kadayakkara DK, Beatty PL, Turner MS, Janjic JM, Ahrens ET, Finn OJ (2010) Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas 39(4):510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vlad AM, Diaconu I, Gantt KR (2006) MUC1 in endometriosis and ovarian cancer. Immunol Res 36(1–3):229–236

    Article  CAS  PubMed  Google Scholar 

  26. Kimura T, McKolanis JR, Dzubinski LA, Islam K, Potter DM, Salazar AM, Schoen RE, Finn OJ (2013) MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 6(1):18–26

    Article  CAS  Google Scholar 

  27. Cramer DW, Titus-Ernstoff L, McKolanis JR, Welch WR, Vitonis AF, Berkowitz RS, Finn OJ (2005) Conditions associated with antibodies against the tumor-associated antigen MUC1 and their relationship to risk for ovarian cancer. Cancer Epidemiol Biomarkers Prev 14(5):1125–1131

    Article  CAS  PubMed  Google Scholar 

  28. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, Rufer N, Speiser DE (2011) Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest 121(6):2350–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferris RL, Lu B, Kane LP (2014) Too much of a good thing? Tim-3 and TCR signaling in T cell exhaustion. J Immunol 193(4):1525–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    Article  CAS  PubMed  Google Scholar 

  32. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  33. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337

    Article  PubMed  Google Scholar 

  34. Pardoll D (2015) Cancer and the Immune System: Basic Concepts and Targets for Intervention. Semin Oncol 42(4):523–538

    Article  CAS  PubMed  Google Scholar 

  35. Ramanathan RK, Lee KM, McKolanis J, Hitbold E, Schraut W, Moser AJ, Warnick E, Whiteside T, Osborne J, Kim H, Day R, Troetschel M, Finn OJ (2005) Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother 54(3):254–264

    Article  CAS  PubMed  Google Scholar 

  36. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DA (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Aatur Singhi for providing IPMN tissue for immunohistochemistry and Dr. John McKolanis for help with ELISA. This work was supported by the National Institute of Health Grant CA168392-05 (Finn) and the University of Pittsburgh CTSI Grant # 5UL1TR000005 (Finn and Brand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivera J. Finn.

Ethics declarations

Conflict of interest

None of the authors has conflict of interest to declare.

Additional information

Pamela L. Beatty and Rick van der Geest have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beatty, P.L., van der Geest, R., Hashash, J.G. et al. Immunobiology and immunosurveillance in patients with intraductal papillary mucinous neoplasms (IPMNs), premalignant precursors of pancreatic adenocarcinomas. Cancer Immunol Immunother 65, 771–778 (2016). https://doi.org/10.1007/s00262-016-1838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1838-1

Keywords

Navigation