Skip to main content

Advertisement

Log in

Deficiency of IL-17A, but not the prototypical Th17 transcription factor RORγt, decreases murine spontaneous intestinal tumorigenesis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

While inflammation has been associated with the development and progression of colorectal cancer, the exact role of the inflammatory Th17 pathway remains unclear. In this study, we aimed to determine the relative importance of IL-17A and the master regulator of the Th17 pathway, the transcription factor RORγt, in the sporadic intestinal neoplasia of APCMIN/+ mice and in human colorectal cancer. We show that levels of IL-17A are increased in human colon cancer as compared to adjacent uninvolved colon. Similarly, naïve helper T cells from colorectal cancer patients are more inducible into the Th17 pathway. Furthermore, IL-17A, IL-21, IL-22, and IL-23 are all demonstrated to be directly mitogenic to human colorectal cancer cell lines. Nevertheless, deficiency of IL-17A but not RORγt is associated with decreased spontaneous intestinal tumorigenesis in the APCMIN/+ mouse model, despite the fact that helper T cells from RORγt-deficient APCMIN/+ mice do not secrete IL-17A when subjected to Th17-polarizing conditions and that Il17a expression is decreased in the intestine of RORγt-deficient APCMIN/+ mice. Differential expression of Th17-associated cytokines between IL-17A-deficient and RORγt-deficient APCMIN/+ mice may explain the difference in adenoma development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANCOVA:

Analysis of covariance for independent samples

APC:

Adenomatous polyposis coli

Apc :

Adenomatous polyposis coli gene

ATCC:

American Type Culture Collection

FAP:

Familial adenomatous polyposis

HET:

Heterozygote

IACUC:

Institutional Animal Care and Use Committee

IBD:

Inflammatory bowel disease

ILC:

Innate lymphoid cell

ILC3:

Group 3 innate lymphoid cell

IRB:

Institutional review board

KO:

Knockout

MIN:

Multiple intestinal neoplasia

NKT cell:

Natural killer T cell

qRT-PCR:

Quantitative real-time polymerase chain reaction

siRNA:

Small interfering ribonucleic acid

SPF:

Specific pathogen-free

Treg:

Regulatory T cell

VABHS:

VA Boston Healthcare System

WT:

Wild type

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  2. Virchow RC (1863) The malignant neoplasias. In: Hirschwald A (ed) Thirty lectures hold within the winter-semester 1862–1863. Berlin University, Berlin

    Google Scholar 

  3. Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA, Snover DC, Church TR, Allen JI, Beach M, Beck GJ, Bond JH, Byers T, Greenberg ER, Mandel JS, Marcon N, Mott LA, Pearson L, Saibil F, van Stolk RU (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 348(10):891–899. doi:10.1056/NEJMoa021735

    Article  PubMed  CAS  Google Scholar 

  4. Benamouzig R, Deyra J, Martin A, Girard B, Jullian E, Piednoir B, Couturier D, Coste T, Little J, Chaussade S (2003) Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology 125(2):328–336. doi:10.1016/S0016-5085(03)00887-4

    Article  PubMed  CAS  Google Scholar 

  5. Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, Petrelli N, Pipas JM, Karp DD, Loprinzi CL, Steinbach G, Schilsky R (2003) A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 348(10):883–890. doi:10.1056/NEJMoa021633

    Article  PubMed  CAS  Google Scholar 

  6. Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, Tang J, Rosenstein RB, Wittes J, Corle D, Hess TM, Woloj GM, Boisserie F, Anderson WF, Viner JL, Bagheri D, Burn J, Chung DC, Dewar T, Foley TR, Hoffman N, Macrae F, Pruitt RE, Saltzman JR, Salzberg B, Sylwestrowicz T, Gordon GB, Hawk ET (2006) Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 355(9):873–884. doi:10.1056/NEJMoa061355

    Article  PubMed  CAS  Google Scholar 

  7. Baron JA, Sandler RS, Bresalier RS, Quan H, Riddell R, Lanas A, Bolognese JA, Oxenius B, Horgan K, Loftus S, Morton DG (2006) A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 131(6):1674–1682. doi:10.1053/j.gastro.2006.08.079

    Article  PubMed  CAS  Google Scholar 

  8. Rao VP, Poutahidis T, Ge Z, Nambiar PR, Horwitz BH, Fox JG, Erdman SE (2006) Proinflammatory CD4+CD45RB(hi) lymphocytes promote mammary and intestinal carcinogenesis in Apc(Min/+) mice. Cancer Res 66(1):57–61. doi:10.1158/0008-5472.CAN-05-3445

    Article  PubMed  CAS  Google Scholar 

  9. Erdman SE, Sohn JJ, Rao VP, Nambiar PR, Ge Z, Fox JG, Schauer DB (2005) CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+mice. Cancer Res 65(10):3998–4004. doi:10.1158/0008-5472.CAN-04-3104

    Article  PubMed  CAS  Google Scholar 

  10. Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317(5834):124–127. doi:10.1126/science.1140488

    Article  PubMed  CAS  Google Scholar 

  11. Baltgalvis KA, Berger FG, Pena MM, Davis JM, Muga SJ, Carson JA (2008) Interleukin-6 and cachexia in ApcMin/+ mice. Am J Physiol Regul Integr Comp Physiol 294(2):R393–R401. doi:10.1152/ajpregu.00716.2007

    Article  PubMed  CAS  Google Scholar 

  12. Nandi B, Pai C, Huang Q, Prabhala RH, Munshi NC, Gold JS (2014) CCR6, the sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS ONE 9(5):e97566. doi:10.1371/journal.pone.0097566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421(6924):744–748. doi:10.1038/nature01355

    Article  PubMed  CAS  Google Scholar 

  14. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198(12):1951–1957. doi:10.1084/jem.20030896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648–651. doi:10.1038/nature05505

    Article  PubMed  CAS  Google Scholar 

  16. Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, Quesniaux V, Fossiez F, Ryffel B, Schnyder B (2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp Med 203(12):2715–2725. doi:10.1084/jem.20061401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116(5):1310–1316. doi:10.1172/JCI21404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133. doi:10.1016/j.cell.2006.07.035

    Article  PubMed  CAS  Google Scholar 

  19. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M (2006) IL-23 promotes tumour incidence and growth. Nature 442(7101):461–465. doi:10.1038/nature04808

    Article  PubMed  CAS  Google Scholar 

  20. Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Chaumette MT, Berrehar F, Seikour A, Charachon A, Karoui M, Leroy K, Farcet JP, Sobhani I (2008) High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut 57(6):772–779. doi:10.1136/gut.2007.123794

    Article  PubMed  Google Scholar 

  21. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, Housseau F, Pardoll DM, Sears CL (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15(9):1016–1022. doi:10.1038/nm.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chae WJ, Gibson TF, Zelterman D, Hao L, Henegariu O, Bothwell AL (2010) Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci USA 107(12):5540–5544. doi:10.1073/pnas.0912675107

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chae WJ, Bothwell AL (2011) IL-17F deficiency inhibits small intestinal tumorigenesis in ApcMin/+ mice. Biochem Biophys Res Commun 414(1):31–36. doi:10.1016/j.bbrc.2011.09.016

    Article  PubMed  CAS  Google Scholar 

  24. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pages F, Galon J (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 71(4):1263–1271. doi:10.1158/0008-5472.CAN-10-2907

    Article  PubMed  CAS  Google Scholar 

  25. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491(7423):254–258. doi:10.1038/nature11465

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, Ham S, Sandall BP, Khan MW, Mahvi DM, Halverson AL, Stryker SJ, Boller AM, Singal A, Sneed RK, Sarraj B, Ansari MJ, Oft M, Iwakura Y, Zhou L, Bonertz A, Beckhove P, Gounari F, Khazaie K (2012) Expression of RORgammat marks a pathogenic regulatory T cell subset in human colon cancer. Sci Transl Med 4(164):164ra159. doi:10.1126/scitranslmed.3004566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, Hedl M, Zhang W, O’Connor W Jr, Murphy AJ, Valenzuela DM, Yancopoulos GD, Booth CJ, Cho JH, Ouyang W, Abraham C, Flavell RA (2012) IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491(7423):259–263. doi:10.1038/nature11535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chan IH, Jain R, Tessmer MS, Gorman D, Mangadu R, Sathe M, Vives F, Moon C, Penaflor E, Turner S, Ayanoglu G, Chang C, Basham B, Mumm JB, Pierce RH, Yearley JH, McClanahan TK, Phillips JH, Cua DJ, Bowman EP, Kastelein RA, LaFace D (2014) Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol 7(4):842–856. doi:10.1038/mi.2013.101

    Article  PubMed  CAS  Google Scholar 

  29. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114(6):1141–1149. doi:10.1182/blood-2009-03-208249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hinrichs CS, Kaiser A, Paulos CM, Cassard L, Sanchez-Perez L, Heemskerk B, Wrzesinski C, Borman ZA, Muranski P, Restifo NP (2009) Type 17 CD8+ T cells display enhanced antitumor immunity. Blood 114(3):596–599. doi:10.1182/blood-2009-02-203935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17(3):375–387. doi:10.1016/S1074-7613(02)00391-6

    Article  PubMed  CAS  Google Scholar 

  32. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233(4770):1318–1321. doi:10.1126/science.3489291

    Article  PubMed  CAS  Google Scholar 

  33. The Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337. doi:10.1038/nature11252

    Article  PubMed Central  CAS  Google Scholar 

  34. Samur MK (2014) RTCGAToolbox: a new tool for exporting TCGA Firehose data. PLoS ONE 9(9):e106397. doi:10.1371/journal.pone.0106397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W, Pai C, Amin S, Tai YT, Richardson PG, Ghobrial IM, Treon SP, Daley JF, Anderson KC, Kutok JL, Munshi NC (2010) Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115(26):5385–5392. doi:10.1182/blood-2009-10-246660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Spolski R, Leonard WJ (2014) Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 13(5):379–395. doi:10.1038/nrd4296

    Article  PubMed  CAS  Google Scholar 

  37. De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, MacDonald TT, Pallone F, Monteleone G, Stolfi C (2015) Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 34(27):3493–3503. doi:10.1038/onc.2014.286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ngiow SF, Smyth MJ, Teng MW (2010) Does IL-17 suppress tumor growth? Blood 115(12):2554–2555; author reply 2556–2557. doi:10.1182/blood-2009-11-254607

  39. Hayata K, Iwahashi M, Ojima T, Katsuda M, Iida T, Nakamori M, Ueda K, Nakamura M, Miyazawa M, Tsuji T, Yamaue H (2013) Inhibition of IL-17A in tumor microenvironment augments cytotoxicity of tumor-infiltrating lymphocytes in tumor-bearing mice. PLoS ONE 8(1):e53131. doi:10.1371/journal.pone.0053131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Gounari F, Chang R, Cowan J, Guo Z, Dose M, Gounaris E, Khazaie K (2005) Loss of adenomatous polyposis coli gene function disrupts thymic development. Nat Immunol 6(8):800–809. doi:10.1038/ni1228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247(4940):322–324. doi:10.1126/science.2296722

    Article  PubMed  CAS  Google Scholar 

  42. Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 104(50):19977–19982. doi:10.1073/pnas.0704620104

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sinnamon MJ, Carter KJ, Sims LP, Lafleur B, Fingleton B, Matrisian LM (2008) A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 29(4):880–886. doi:10.1093/carcin/bgn040

    Article  PubMed  CAS  Google Scholar 

  44. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, Wu C, Karwacz K, Xiao S, Jorgolli M, Gennert D, Satija R, Shakya A, Lu DY, Trombetta JJ, Pillai MR, Ratcliffe PJ, Coleman ML, Bix M, Tantin D, Park H, Kuchroo VK, Regev A (2013) Dynamic regulatory network controlling TH17 cell differentiation. Nature 496(7446):461–468. doi:10.1038/nature11981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bermejo DA, Jackson SW, Gorosito-Serran M, Acosta-Rodriguez EV, Amezcua-Vesely MC, Sather BD, Singh AK, Khim S, Mucci J, Liggitt D, Campetella O, Oukka M, Gruppi A, Rawlings DJ (2013) Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORgammat and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 14(5):514–522. doi:10.1038/ni.2569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, Mebius RE, Littman DR (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288(5475):2369–2373. doi:10.1126/science.288.5475.2369

    Article  PubMed  CAS  Google Scholar 

  47. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464(7293):1371–1375. doi:10.1038/nature08949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR (2004) An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5(1):64–73. doi:10.1038/ni1022

    Article  PubMed  CAS  Google Scholar 

  49. Shibata K, Yamada H, Sato T, Dejima T, Nakamura M, Ikawa T, Hara H, Yamasaki S, Kageyama R, Iwakura Y, Kawamoto H, Toh H, Yoshikai Y (2011) Notch–Hes1 pathway is required for the development of IL-17-producing gammadelta T cells. Blood 118(3):586–593. doi:10.1182/blood-2011-02-334995

    Article  PubMed  CAS  Google Scholar 

  50. Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, Leite-de-Moraes MC (2008) Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci USA 105(50):19845–19850. doi:10.1073/pnas.0806472105

    Article  PubMed  PubMed Central  Google Scholar 

  51. Obermajer N, Popp FC, Soeder Y, Haarer J, Geissler EK, Schlitt HJ, Dahlke MH (2014) Conversion of Th17 into IL-17A(neg) regulatory T cells: a novel mechanism in prolonged allograft survival promoted by mesenchymal stem cell-supported minimized immunosuppressive therapy. J Immunol 193(10):4988–4999. doi:10.4049/jimmunol.1401776

    Article  PubMed  CAS  Google Scholar 

  52. Leppkes M, Becker C, Ivanov II, Hirth S, Wirtz S, Neufert C, Pouly S, Murphy AJ, Valenzuela DM, Yancopoulos GD, Becher B, Littman DR, Neurath MF (2009) RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136(1):257–267. doi:10.1053/j.gastro.2008.10.018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a United States Department of Veteran Affairs Office of Research and Development Career Development Award-2 (Jason S. Gold).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Gold.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Mia Shapiro and Bisweswar Nandi: Co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, M., Nandi, B., Pai, C. et al. Deficiency of IL-17A, but not the prototypical Th17 transcription factor RORγt, decreases murine spontaneous intestinal tumorigenesis. Cancer Immunol Immunother 65, 13–24 (2016). https://doi.org/10.1007/s00262-015-1769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1769-2

Keywords

Navigation