Skip to main content
Log in

Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor-modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded threefold in response to LM, and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

BM:

Bone marrow

CAR-T:

Chimeric antigen receptor-modified T cells

CEA:

Carcinoembryonic antigen

CLL:

Chronic lymphocytic leukemia

FMO:

Fluorescence minus one

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

IDO:

Indolamine 2,3-dioxygenase

IFNγ:

Interferon gamma

IL2:

Interleukin 2

iNOS:

Inducible nitric oxide synthase

LM:

Liver metastases

L-MDSC:

Liver myeloid-derived suppressor cells

NO:

Nitric oxide

NPC:

Non-parenchymal cells

PD-1:

Programmed death 1

PD-L1:

Programmed death ligand 1

pSTAT3:

Phosphorylated signal transducer and activator of transcription 3

SSG:

Sodium stibogluconate

STAT3:

Signal transducer and activator of transcription 3

UT:

Unmodified/untransduced T cells

References

  1. Donadon M, Ribero D, Morris-Stiff G, Abdalla EK, Vauthey JN (2007) New paradigm in the management of liver-only metastases from colorectal cancer. Gastrointest Cancer Res 1(1):20–27

    PubMed Central  PubMed  Google Scholar 

  2. Tomlinson JS, Jarnagin WR, DeMatteo RP, Fong Y, Kornprat P, Gonen M, Kemeny N, Brennan MF, Blumgart LH, D’Angelica M (2007) Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol 25(29):4575–4580. doi:10.1200/JCO.2007.11.0833

    Article  PubMed  Google Scholar 

  3. Grothey A, Sargent D (2005) Overall survival of patients with advanced colorectal cancer correlates with availability of fluorouracil, irinotecan, and oxaliplatin regardless of whether doublet or single-agent therapy is used first line. J Clin Oncol 23(36):9441–9442. doi:10.1200/JCO.2005.04.4792

    Article  PubMed  Google Scholar 

  4. Rothenberg ML, Oza AM, Bigelow RH, Berlin JD, Marshall JL, Ramanathan RK, Hart LL, Gupta S, Garay CA, Burger BG, Le Bail N, Haller DG (2003) Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol 21(11):2059–2069. doi:10.1200/JCO.2003.11.126

    Article  CAS  PubMed  Google Scholar 

  5. Katz SC, Pillarisetty V, Bamboat ZM, Shia J, Hedvat C, Gonen M, Jarnagin W, Fong Y, Blumgart L, D’Angelica M, DeMatteo RP (2009) T cell infiltrate predicts long-term survival following resection of colorectal cancer liver metastases. Ann Surg Oncol 16(9):2524–2530. doi:10.1245/s10434-009-0585-3

    Article  PubMed  Google Scholar 

  6. Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, Hedvat CV, Gonen M, Jarnagin WR, Fong Y, D’Angelica MI, DeMatteo RP (2013) Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol 20(3):946–955. doi:10.1245/s10434-012-2668-9

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–23. doi: 10.1056/NEJMoa1003466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF, IMPACT Study Investigators (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–22. doi: 10.1056/NEJMoa1001294

    Article  Google Scholar 

  9. Davila ML, Kloss CC, Gunset G, Sadelain M (2013) CD19 CAR-targeted T cells induce long-term remission and B cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS One 8(4):e61338. doi:10.1371/journal.pone.0061338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. doi:10.1056/NEJMoa1215134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lo AS, Ma Q, Liu DL, Junghans RP (2010) Anti-GD3 chimeric sFv-CD28/T-cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res 16(10):2769–2780. doi:10.1158/1078-0432.CCR-10-0043

    Article  CAS  PubMed  Google Scholar 

  12. Midiri G, Amanti C, Benedetti M, Campisi C, Santeusanio G, Castagna G, Peronace L, Di Tondo U, Di Paola M, Pascal RR (1985) CEA tissue staining in colorectal cancer patients. A way to improve the usefulness of serial serum CEA evaluation. Cancer 55(11):2624–2629

    Article  CAS  PubMed  Google Scholar 

  13. Emtage PC, Lo AS, Gomes EM, Liu DL, Gonzalo-Daganzo RM, Junghans RP (2008) Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res 14(24):8112–8122. doi:10.1158/1078-0432.CCR-07-4910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Saied A, Licata L, Burga RA, Thorn M, McCormack E, Stainken BF, Assanah EO, Khare PD, Davies R, Espat NJ, Junghans RP, Katz SC (2014) Neutrophil:lymphocyte ratios and serum cytokine changes after hepatic artery chimeric antigen receptor-modified T-cell infusions for liver metastases. Cancer Gene Ther 21(11):457–462. doi:10.1038/cgt.2014.50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    Article  CAS  PubMed  Google Scholar 

  16. Katz SC, Pillarisetty VG, Bleier JI, Kingham TP, Chaudhry UI, Shah AB, DeMatteo RP (2005) Conventional liver CD4 T cells are functionally distinct and suppressed by environmental factors. Hepatology 42(2):293–300. doi:10.1002/hep.20795

    Article  PubMed  Google Scholar 

  17. Hochst B, Schildberg FA, Sauerborn P, Gabel YA, Gevensleben H, Goltz D, Heukamp LC, Turler A, Ballmaier M, Gieseke F, Muller I, Kalff J, Kurts C, Knolle PA, Diehl L (2013) Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 59(3):528–535. doi:10.1016/j.jhep.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  18. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53–65. doi:10.1016/j.semcancer.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  19. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59. doi:10.1007/s00262-008-0523-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Abate-Daga D, Hanada K, Davis JL, Yang JC, Rosenberg SA, Morgan RA (2013) Expression profiling of TCR-engineered T cells demonstrates overexpression of multiple inhibitory receptors in persisting lymphocytes. Blood 122(8):1399–1410. doi:10.1182/blood-2013-04-495531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sharpe AH, Wherry WJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8(3):239–245

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh CC, Mukherjee A, David S, Knaus UG, Stearns-Kurosawa DJ, Kurosawa S, Parikh SM (2012) Impaired function of the Tie-2 receptor contributes to vascular leakage and lethality in anthrax. Proc Natl Acad Sci USA 109(25):10024–10029. doi:10.1073/pnas.1120755109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, Rizzuto GA, Lazarus JJ, Pamer EG, Houghton AN, Merghoub T, Wolchok JD (2012) Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res 72(4):876–886. doi:10.1158/0008-5472.CAN-11-1792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bronte V, Chappell DB, Apolloni E, Cabrelle A, Wang M, Hwu P, Restifo NP (1999) Unopposed production of granulocyte–macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728–5737

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Schmidt K, Zilio S, Schmollinger JC, Bronte V, Blankenstein T, Willimsky G (2013) Differently immunogenic cancers in mice induce immature myeloid cells that suppress CTL in vitro but not in vivo following transfer. Blood 121(10):1740–1748. doi:10.1182/blood-2012-06-436568

    Article  CAS  PubMed  Google Scholar 

  26. John LB, Devaud C, Duong CM, Yong C, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20):5636–5646. doi:10.1158/1078-0432.CCR-13-0458

    Article  CAS  PubMed  Google Scholar 

  27. Li P, Harris D, Liu Z, Rozovski U, Ferrajoli A, Wang Y, Bueso-Ramos C, Hazan-Halevy I, Grgurevic S, Wierda W, Burger J, O’Brien S, Faderl S, Keating M, Estrov Z (2014) STAT3-activated GM-CSFRalpha translocates to the nucleus and protects CLL cells from apoptosis. Mol Cancer Res 12(9):1267–1282. doi:10.1158/1541-7786.MCR-13-0652-T

    Article  CAS  PubMed  Google Scholar 

  28. Wolfle SJ, Strebovsky J, Bartz H, Sahr A, Arnold C, Kaiser C, Dalpke AH, Heeg K (2011) PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41(2):413–424. doi:10.1002/eji.201040979

    Article  PubMed  Google Scholar 

  29. Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI (2005) Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res 65(20):9525–9535. doi:10.1158/0008-5472.CAN-05-0529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ilkovitch DLD (2009) The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 69(13):5514–5521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhao L, Lim SY, Gordon-Weeks AN, Tapmeier TT, Im JH, Cao Y, Beech J, Allen D, Smart S, Muschel RJ (2013) Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57(2):829–839. doi:10.1002/hep.26094

    Article  CAS  PubMed  Google Scholar 

  32. Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56(5):739–745. doi:10.1007/s00262-006-0272-1

    Article  PubMed  Google Scholar 

  33. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003) L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24(6):302–306

    Article  CAS  PubMed  Google Scholar 

  34. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168(2):689–695

    Article  CAS  PubMed  Google Scholar 

  35. Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK (2006) Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia 20(10):1819–1828. doi:10.1038/sj.leu.2404366

    Article  CAS  PubMed  Google Scholar 

  36. Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11(7):802–807. doi:10.1016/j.intimp.2011.01.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte–macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835. doi:10.1016/j.ccr.2012.04.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kohanbash G, McKaveney K, Sakaki M, Ueda R, Mintz AH, Amankulor N, Fujita M, Ohlfest JR, Okada H (2013) GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-alpha. Cancer Res 73(21):6413–6423. doi:10.1158/0008-5472.CAN-12-4124

    Article  CAS  PubMed  Google Scholar 

  40. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D (2012) Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21(6):836–847. doi:10.1016/j.ccr.2012.04.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22–35. doi:10.1002/eji.200939903

    Article  CAS  PubMed  Google Scholar 

  42. Katz SC, Pillarisetty VG, Bleier JI, Shah AB, DeMatteo RP (2004) Liver sinusoidal endothelial cells are insufficient to activate T cells. J Immunol 173(1):230–235

    Article  CAS  PubMed  Google Scholar 

  43. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90(8):3539–3543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nemunaitis J (2003) GVAX (GMCSF gene modified tumor vaccine) in advanced stage non small cell lung cancer. J Control Release 91(1–2):225–231

    Article  CAS  PubMed  Google Scholar 

  45. Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, Collins SL, Petruzzelli GJ (1997) Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte–macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer 74(1):69–74

    Article  CAS  PubMed  Google Scholar 

  46. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte–macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64(17):6337–6343. doi:10.1158/0008-5472.CAN-04-0757

    Article  CAS  PubMed  Google Scholar 

  47. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, Azuma M, Yagita H (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169(10):5538–5545

    Article  CAS  PubMed  Google Scholar 

  48. Gaudreau S, Guindi C, Menard M, Benabdallah A, Dupuis G, Amrani A (2010) GM-CSF induces bone marrow precursors of NOD mice to skew into tolerogenic dendritic cells that protect against diabetes. Cell Immunol 265(1):31–36. doi:10.1016/j.cellimm.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  49. Valdembri D, Serini G, Vacca A, Ribatti D, Bussolino F (2002) In vivo activation of JAK2/STAT-3 pathway during angiogenesis induced by GM-CSF. FASEB J 16(2):225–227. doi:10.1096/fj.01-0633fje

    CAS  PubMed  Google Scholar 

  50. Mauldin IS, Tung KS, Lorenz UM (2012) The tyrosine phosphatase SHP-1 dampens murine Th17 development. Blood 119(19):4419–4429. doi:10.1182/blood-2011-09-377069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Yu J, Du W, Yan F, Wang Y, Li H, Cao S, Yu W, Shen C, Liu J, Ren X (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190(7):3783–3797. doi:10.4049/jimmunol.1201449

    Article  CAS  PubMed  Google Scholar 

  52. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H (2013) PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation 10:111. doi:10.1186/1742-2094-10-111

    Article  PubMed Central  PubMed  Google Scholar 

  53. Katz SC, Burga R, Wang L, Mooring W, Davies R, Stainken BF, Assanah EO, Khare P, Ma Q, Espat NJ, Junghans RP (2014) Hepatic Immunotherapy for Metastases (HITM): a phase I trial of anti-CEA genetically modified T cells for unresectable adenocarcinoma. Society of Surgical Oncology 67th Annual Cancer Symposium, Phoenix, AZ

Download references

Acknowledgments

The authors would like to thank Erica Santos for her technical assistance, Dr. Jeffrey Schlom for providing MC38 and MC38CEA cell lines, Dr. Tasuku Honjo for providing the PD-1−/− mice to begin our in-house breeding, and Dr. Hansen for generously providing the Wi2 anti-idiotype CAR antibody. We would like to thank Dr. John Morgan and Roger Williams Medical Center Core Facility for providing us with the necessary equipment to carry out flow cytometry and in vivo bioluminescence experiments. Support for this work was provided by the National Institutes of Health (1K08CA160662-01A1), the Society of Surgical Oncology Clinical Investigator Award supported by an education grant from Genentech, and the Rhode Island Foundation.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Katz.

Additional information

Rachel A. Burga and Mitchell Thorn have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burga, R.A., Thorn, M., Point, G.R. et al. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 64, 817–829 (2015). https://doi.org/10.1007/s00262-015-1692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1692-6

Keywords

Navigation