Skip to main content

Advertisement

Log in

CCL17 and CCL22/CCR4 signaling is a strong candidate for novel targeted therapy against nasal natural killer/T-cell lymphoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Nasal natural killer/T-cell lymphoma (NNKTL) is associated with Epstein–Barr virus and has a poor prognosis because of local invasion and/or multiple dissemination. Various chemokines play a role in tumor proliferation and invasion, and chemokine receptors including the C-C chemokine receptor 4 (CCR4) are recognized as potential targets for treating hematologic malignancies. The aim of the present study was to determine whether specific chemokines are produced by NNKTL. We compared chemokine expression patterns in culture supernatants of NNKTL cell lines with those of other lymphoma or leukemia cell lines using chemokine protein array and ELISA. Chemokine (C-C motif) ligand (CCL) 17 and CCL22 were highly produced by NNKTL cell lines as compared to the other cell lines. In addition, CCL17 and CCL22 were readily observed in the sera of NNKTL patients. The levels of these chemokines were significantly higher in patients than in healthy controls. Furthermore, we detected the expression of CCR4 (the receptor for CCL17 and CCL22) on the surface of NNKTL cell lines and in tissues of NNKTL patients. Anti-CCR4 monoclonal antibody (mAb) efficiently induced antibody-dependent cellular cytotoxicity mediated by natural killer cells against NNKTL cell lines. Our results suggest that CCL17 and CCL22 may be important factors in the development of NNKTL and open up the possibility of immunotherapy of this lymphoma using anti-CCR4 mAb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

ATLL:

Adult T-cell leukemia/lymphoma

CCL:

Chemokine (C-C motif) ligand

CCR4:

C-C chemokine receptor 4

EBV:

Epstein–Barr virus

FBS:

Fetal bovine serum

IL:

Interleukin

IP-10:

Interferon-gamma-inducible protein-10

LDH:

Lactate dehydrogenase

LMP-1:

Latent membrane protein-1

mAbs:

Monoclonal antibodies

MDC:

Macrophage-derived chemokine

miR:

Micro-RNA

NK cell:

Natural killer cell

NNKTL:

Nasal natural killer/T-cell lymphoma

PBMCs:

Peripheral blood mononuclear cells

PBS:

Phosphate-buffered saline

TARC:

Thymus and activation-regulated chemokine

References

  1. Harabuchi Y, Takahara M, Kishibe K, Moriai S, Nagato T, Ishii H (2009) Nasal natural killer (NK)/T-cell lymphoma: clinical, histological, virological, and genetic features. Int J Clin Oncol 14:181–190. doi:10.1007/s10147-009-0882-7

    Article  CAS  PubMed  Google Scholar 

  2. Harabuchi Y, Yamanaka N, Kataura A, Imai S, Kinoshita T, Mizuno F, Osato T (1990) Epstein–Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet 335:128–130

    Article  CAS  PubMed  Google Scholar 

  3. Emile JF, Boulland ML, Haioun C, Kanavaros P, Petrella T, Delfau-Larue MH, Bensussan A, Farcet JP, Gaulard P (1996) CD5-CD56+ T-cell receptor silent peripheral T-cell lymphomas are natural killer cell lymphomas. Blood 87:1466–1473

    CAS  PubMed  Google Scholar 

  4. Nagata H, Konno A, Kimura N, Zhang Y, Kimura M, Demachi A, Sekine T, Yamamoto K, Shimizu N (2001) Characterization of novel natural killer (NK)-cell and gammadelta T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with the Epstein–Barr virus. Blood 97:708–713

    Article  CAS  PubMed  Google Scholar 

  5. Harabuchi Y, Imai S, Wakashima J, Hirao M, Kataura A, Osato T, Kon S (1996) Nasal T-cell lymphoma causally associated with Epstein–Barr virus: clinicopathologic, phenotypic, and genotypic studies. Cancer 77:2137–2149. doi:10.1002/(SICI)1097-0142(19960515)77:10<2137:AID-CNCR27>3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  6. Minarovits J, Hu LF, Imai S, Harabuchi Y, Kataura A, Minarovits-Kormuta S, Osato T, Klein G (1994) Clonality, expression and methylation patterns of the Epstein–Barr virus genomes in lethal midline granulomas classified as peripheral angiocentric T cell lymphomas. J Gen Virol 75(Pt 1):77–84

    Article  CAS  PubMed  Google Scholar 

  7. Nagato T, Kobayashi H, Kishibe K, Takahara M, Ogino T, Ishii H, Oikawa K, Aoki N, Sato K, Kimura S, Shimizu N, Tateno M, Harabuchi Y (2005) Expression of interleukin-9 in nasal natural killer/T-cell lymphoma cell lines and patients. Clin Cancer Res 11:8250–8257. doi:10.1158/1078-0432.CCR-05-1426

    Article  CAS  PubMed  Google Scholar 

  8. Takahara M, Kis LL, Nagy N, Liu A, Harabuchi Y, Klein G, Klein E (2006) Concomitant increase of LMP1 and CD25 (IL-2-receptor alpha) expression induced by IL-10 in the EBV-positive NK lines SNK6 and KAI3. Int J Cancer 119:2775–2783. doi:10.1002/ijc.22139

    Article  CAS  PubMed  Google Scholar 

  9. Moriai S, Takahara M, Ogino T, Nagato T, Kishibe K, Ishii H, Katayama A, Shimizu N, Harabuchi Y (2009) Production of interferon-{gamma}-inducible protein-10 and its role as an autocrine invasion factor in nasal natural killer/T-cell lymphoma cells. Clin Cancer Res 15:6771–6779. doi:10.1158/1078-0432.CCR-09-1052

    Article  CAS  PubMed  Google Scholar 

  10. Takahara M, Nagato T, Komabayashi Y, Yoshino K, Ueda S, Kishibe K, Harabuchi Y (2013) Soluble ICAM-1 secretion and its functional role as an autocrine growth factor in nasal NK/T cell lymphoma cells. Exp Hematol 41:711–718. doi:10.1016/j.exphem.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  11. Yoshino K, Kishibe K, Nagato T, Ueda S, Komabayashi Y, Takahara M, Harabuchi Y (2013) Expression of CD70 in nasal natural killer/T cell lymphoma cell lines and patients; its role for cell proliferation through binding to soluble CD27. Br J Haematol 160:331–342. doi:10.1111/bjh.12136

    Article  CAS  PubMed  Google Scholar 

  12. Komabayashi Y, Kishibe K, Nagato T, Ueda S, Takahara M, Harabuchi Y (2014) Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma. Am J Hematol 89:25–33. doi:10.1002/ajh.23570

    Article  CAS  PubMed  Google Scholar 

  13. Wang JM, Deng X, Gong W, Su S (1998) Chemokines and their role in tumor growth and metastasis. J Immunol Methods 220:1–17

    Article  CAS  PubMed  Google Scholar 

  14. Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS (2013) Chemokines in tumor progression and metastasis. Oncotarget 4:2171–2185

    PubMed Central  PubMed  Google Scholar 

  15. Maggio E, van den Berg A, Diepstra A, Kluiver J, Visser L, Poppema S (2002) Chemokines, cytokines and their receptors in Hodgkin’s lymphoma cell lines and tissues. Ann Oncol 13(Suppl 1):52–56

    Article  PubMed  Google Scholar 

  16. Laurence AD (2006) Location, movement and survival: the role of chemokines in haematopoiesis and malignancy. Br J Haematol 132:255–267. doi:10.1111/j.1365-2141.2005.05841.x

    Article  CAS  PubMed  Google Scholar 

  17. Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, Hieshima K, Tatsumi Y, Matsushima K, Hasegawa H, Kanamaru A, Kamihira S, Yamada Y (2002) Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood 99:1505–1511

    Article  CAS  PubMed  Google Scholar 

  18. Ishida T, Ishii T, Inagaki A, Yano H, Kusumoto S, Ri M, Komatsu H, Iida S, Inagaki H, Ueda R (2006) The CCR4 as a novel-specific molecular target for immunotherapy in Hodgkin lymphoma. Leukemia 20:2162–2168. doi:10.1038/sj.leu.2404415

    Article  CAS  PubMed  Google Scholar 

  19. Ishii T, Ishida T, Utsunomiya A, Inagaki A, Yano H, Komatsu H, Iida S, Imada K, Uchiyama T, Akinaga S, Shitara K, Ueda R (2010) Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res 16:1520–1531. doi:10.1158/1078-0432.CCR-09-2697

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto K, Utsunomiya A, Tobinai K, Tsukasaki K, Uike N, Uozumi K, Yamaguchi K, Yamada Y, Hanada S, Tamura K, Nakamura S, Inagaki H, Ohshima K, Kiyoi H, Ishida T, Matsushima K, Akinaga S, Ogura M, Tomonaga M, Ueda R (2010) Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol 28:1591–1598. doi:10.1200/JCO.2009.25.3575

    Article  CAS  PubMed  Google Scholar 

  21. Imai T, Baba M, Nishimura M, Kakizaki M, Takagi S, Yoshie O (1997) The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem 272:15036–15042

    Article  CAS  PubMed  Google Scholar 

  22. Nomiyama H, Imai T, Kusuda J, Miura R, Callen DF, Yoshie O (1998) Human chemokines fractalkine (SCYD1), MDC (SCYA22) and TARC (SCYA17) are clustered on chromosome 16q13. Cytogenet Cell Genet 81:10–11

    Article  CAS  PubMed  Google Scholar 

  23. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD (2000) The World Health Organization classification of neoplasms of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House, Virginia, November 1997. Hematol J 1:53–66. doi:10.1038/sj/thj/6200013

    Article  CAS  PubMed  Google Scholar 

  24. Nagata H, Numata T, Konno A, Mikata I, Kurasawa K, Hara S, Nishimura M, Yamamoto K, Shimizu N (2001) Presence of natural killer-cell clones with variable proliferative capacity in chronic active Epstein–Barr virus infection. Pathol Int 51:778–785

    Article  CAS  PubMed  Google Scholar 

  25. Yodoi J, Teshigawara K, Nikaido T, Fukui K, Noma T, Honjo T, Takigawa M, Sasaki M, Minato N, Tsudo M et al (1985) TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol 134:1623–1630

    CAS  PubMed  Google Scholar 

  26. Yagita M, Huang CL, Umehara H, Matsuo Y, Tabata R, Miyake M, Konaka Y, Takatsuki K (2000) A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia 14:922–930

    Article  CAS  PubMed  Google Scholar 

  27. Schneider U, Schwenk HU, Bornkamm G (1977) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 19:621–626

    Article  CAS  PubMed  Google Scholar 

  28. Minowada J, Onuma T, Moore GE (1972) Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J Natl Cancer Inst 49:891–895

    CAS  PubMed  Google Scholar 

  29. Ravid Z, Goldblum N, Zaizov R, Schlesinger M, Kertes T, Minowada J, Verbi W, Greaves M (1980) Establishment and characterization of a new leukaemic T-cell line (Peer) with an unusual phenotype. Int J Cancer 25:705–710

    Article  CAS  PubMed  Google Scholar 

  30. Drexler HG, Gaedicke G, Lok MS, Diehl V, Minowada J (1986) Hodgkin’s disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles. Leuk Res 10:487–500

    Article  CAS  PubMed  Google Scholar 

  31. Nakayama T, Hieshima K, Nagakubo D, Sato E, Nakayama M, Kawa K, Yoshie O (2004) Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein–Barr virus. J Virol 78:1665–1674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, Heslop HE, Brenner MK, Dotti G, Savoldo B (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113:6392–6402. doi:10.1182/blood-2009-03-209650

    Article  PubMed Central  PubMed  Google Scholar 

  33. Niens M, Visser L, Nolte IM, van der Steege G, Diepstra A, Cordano P, Jarrett RF, Te Meerman GJ, Poppema S, van den Berg A (2008) Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22. Br J Haematol 140:527–536. doi:10.1111/j.1365-2141.2007.06964.x

    Article  CAS  PubMed  Google Scholar 

  34. Takegawa S, Jin Z, Nakayama T, Oyama T, Hieshima K, Nagakubo D, Shirakawa AK, Tsuzuki T, Nakamura S, Yoshie O (2008) Expression of CCL17 and CCL22 by latent membrane protein 1-positive tumor cells in age-related Epstein–Barr virus-associated B-cell lymphoproliferative disorder. Cancer Sci 99:296–302. doi:10.1111/j.1349-7006.2007.00687.x

    Article  CAS  PubMed  Google Scholar 

  35. Buglio D, Georgakis GV, Hanabuchi S, Arima K, Khaskhely NM, Liu YJ, Younes A (2008) Vorinostat inhibits STAT6-mediated TH2 cytokine and TARC production and induces cell death in Hodgkin lymphoma cell lines. Blood 112:1424–1433. doi:10.1182/blood-2008-01-133769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Alvaro T, Lejeune M, Salvado MT, Bosch R, Garcia JF, Jaen J, Banham AH, Roncador G, Montalban C, Piris MA (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11:1467–1473. doi:10.1158/1078-0432.CCR-04-1869

    Article  PubMed  Google Scholar 

  37. Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S, Inagaki H, Ueda R (2006) Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 66:5716–5722. doi:10.1158/0008-5472.CAN-06-0261

    Article  CAS  PubMed  Google Scholar 

  38. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, Vickers MA (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103:1755–1762. doi:10.1182/blood-2003-07-2594

    Article  CAS  PubMed  Google Scholar 

  39. Ishii H, Takahara M, Nagato T, Kis LL, Nagy N, Kishibe K, Harabuchi Y, Klein E (2012) Monocytes enhance cell proliferation and LMP1 expression of nasal natural killer/T-cell lymphoma cells by cell contact-dependent interaction through membrane-bound IL-15. Int J Cancer 130:48–58. doi:10.1002/ijc.25969

    Article  CAS  PubMed  Google Scholar 

  40. Nieto JC, Canto E, Zamora C, Ortiz MA, Juarez C, Vidal S (2012) Selective loss of chemokine receptor expression on leukocytes after cell isolation. PLoS One 7:e31297. doi:10.1371/journal.pone.0031297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hashimoto S, Nakamura K, Oyama N, Kaneko F, Tsunemi Y, Saeki H, Tamaki K (2006) Macrophage-derived chemokine (MDC)/CCL22 produced by monocyte derived dendritic cells reflects the disease activity in patients with atopic dermatitis. J Dermatol Sci 44:93–99. doi:10.1016/j.jdermsci.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  42. Middeldorp JM, Pegtel DM (2008) Multiple roles of LMP1 in Epstein–Barr virus induced immune escape. Semin Cancer Biol 18:388–396. doi:10.1016/j.semcancer.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  43. Ito A, Ishida T, Utsunomiya A, Sato F, Mori F, Yano H, Inagaki A, Suzuki S, Takino H, Ri M, Kusumoto S, Komatsu H, Iida S, Inagaki H, Ueda R (2009) Defucosylated anti-CCR4 monoclonal antibody exerts potent ADCC against primary ATLL cells mediated by autologous human immune cells in NOD/Shi-scid, IL-2R gamma(null) mice in vivo. J Immunol 183:4782–4791. doi:10.4049/jimmunol.0900699

    Article  CAS  PubMed  Google Scholar 

  44. Ishida T, Ueda R (2006) CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci 97:1139–1146. doi:10.1111/j.1349-7006.2006.00307.x

    Article  CAS  PubMed  Google Scholar 

  45. Kanazawa T, Hiramatsu Y, Iwata S, Siddiquey M, Sato Y, Suzuki M, Ito Y, Goshima F, Murata T, Kimura H (2014) Anti-CCR4 monoclonal antibody mogamulizumab for the treatment of EBV-associated T- and NK-cell lymphoproliferative diseases. Clin Cancer Res 20:5075–5084. doi:10.1158/1078-0432.CCR-14-0580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Shimizu N (Tokyo Medical and Dental University) and Prof. Klein E (Karolinska Institute) for generously providing cell lines. This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI [Grant Numbers 24791735 (Kumai T), 23791869 (Nagato T), 25460430 (Kobayashi H), and 24390385 (Harabuchi Y)] and by National Institutes of Health (NIH) Grants [Grant Numbers R01CA136828 and R01CA157303 (Celis E)].

Conflict of interest

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshihiro Nagato or Hiroya Kobayashi.

Additional information

Takumi Kumai and Toshihiro Nagato contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumai, T., Nagato, T., Kobayashi, H. et al. CCL17 and CCL22/CCR4 signaling is a strong candidate for novel targeted therapy against nasal natural killer/T-cell lymphoma. Cancer Immunol Immunother 64, 697–705 (2015). https://doi.org/10.1007/s00262-015-1675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1675-7

Keywords

Navigation