Skip to main content

Advertisement

Log in

Expression and function of Toll-like receptors in peripheral blood mononuclear cells from patients with ovarian cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Inflammation has been implicated in the initiation and progression of ovarian cancer (OC), the underlying mechanisms of which are still unclear. We hypothesized that the abnormal expression of Toll-like receptors (TLRs), which were potential activators of nuclear factor-kappa B p65 (NF-κB p65), could promote inflammation and tumorigenesis in OC. In this study, we characterized the expression of TLRs in peripheral blood mononuclear cells (PBMCs) and found TLR2 and TLR6 mRNAs levels to be higher in PBMCs from OC patients than in those from benign disease (BC) or healthy normal controls (NC). Flow cytometry analysis showed that TLR1, TLR2 and TLR6 were highly expressed in monocytes from OC patients, but not in those from control subjects. Consistently, inflammatory cytokines interleukin (IL)-1β and IL-6 were up-regulated in PBMCs from OC patients upon stimulation with Pam3CSK4 (TLR1 ligand) and HKLM (TLR2 ligand), compared with unstimulated PBMCs. Stimulation of PBMCs with TLR ligands led to activation of downstream signaling molecules in TLRs (MyD88, TRAF6, TANK, NF-κB p65 and p-NF-κB p65). We also discovered that SK-OV-3-secreted factors were potent PBMCs activators, leading to the production of IL-1β, IL-6 and IL-8 through activation of TLRs and downstream signaling molecules in PBMCs. Before coculturing with SK-OV-3, pretreatment of THP-1 cells or PBMCs with monoclonal antibodies against TLR1, TLR2 or TLR6 inhibited the production of IL-1β and IL-6 and activation of MyD88, TRAF6, TANK, NF-κB p65 and p-NF-κB p65. Our results provided new evidence that TLR1, TLR2 and TLR6 signaling was linked with inflammation in OC microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BC:

Benign disease control

EOC:

Epithelial ovarian cancer

FBS:

Fetal bovine serum

HRP:

Horseradish peroxidase

IL:

Interleukin

MyD88:

Myeloid differentiation factor 88

NC:

Healthy normal controls

NF-κB:

Nuclear factor-kappa B

OC:

Ovarian cancer

PAMPs:

Pathogen-associated molecular patterns

PBMCs:

Peripheral blood mononuclear cells

p-NF-κB:

Phospho-Nuclear factor-kappa B

RT-PCR:

Real-time PCR

TANK:

TRAF family member-associated NF-κB activator

TLRs:

Toll-like receptors

TNFα:

Tumor necrosis factorα

TRAF6:

Tumor necrosis factor receptor-associated factor 6

TRAIL:

TNF-related apoptosis-inducing ligand

References

  1. Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF (2009) Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother 58:1375–1385

    Article  CAS  PubMed  Google Scholar 

  2. Beachy PA, Karhadkar SS, Berman DM (2004) Mending and malignancy. Nature 431:402

    Article  CAS  PubMed  Google Scholar 

  3. Balkwill F, Coussens LM (2004) Cancer—an inflammatory link. Nature 431:405–406

    Article  CAS  PubMed  Google Scholar 

  4. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  5. Setia S, Nehru B, Sanyal SN (2014) Activation of NF-kappaB: bridging the gap between inflammation and cancer in colitis-mediated colon carcinogenesis. Biomed Pharmacother 68:119–128

    Article  CAS  PubMed  Google Scholar 

  6. Kim SS, Ruiz VE, Carroll JD, Moss SF (2011) Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett 305:228–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Rehermann B (2013) Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 19:859–868

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Li S, Yan Q, Chen X, Yang Y, Liu X, Wan X (2013) Interferon-beta Induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells. PLoS One 8:e81366

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kaneda A, Matsusaka K, Aburatani H, Fukayama M (2012) Epstein–Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 72:3445–3450

    Article  CAS  PubMed  Google Scholar 

  10. Giudice LC, Kao LC (2004) Endometriosis. Lancet 364:1789–1799

    Article  PubMed  Google Scholar 

  11. Costa NL, Valadares MC, Souza PPC, Mendonca EF, Oliveira JC, Silva TA, Batista AC (2013) Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol 49:216–223

    Article  CAS  PubMed  Google Scholar 

  12. O’Neill LAJ, Golenbock D, Bowie AG (2013) The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol 13:453–460

    Article  PubMed  Google Scholar 

  13. Stender JD, Glass CK (2013) Epigenomic control of the innate immune response. Curr Opin Pharmacol 13:582–587

    Article  CAS  PubMed  Google Scholar 

  14. Sasai M, Yamamoto M (2013) Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol 32:116–133

    Article  CAS  PubMed  Google Scholar 

  15. Qian C, Cao X (2013) Regulation of Toll-like receptor signaling pathways in innate immune responses. Ann N Y Acad Sci 1283:67–74

    Article  CAS  PubMed  Google Scholar 

  16. Song DH, Lee JO (2012) Sensing of microbial molecular patterns by Toll-like receptors. Immunol Rev 250:216–229

    Article  PubMed  Google Scholar 

  17. Marusawa H, Jenkins BJ (2013) Inflammation and gastrointestinal cancer: an overview. Cancer Lett 345:153–156

    Article  PubMed  Google Scholar 

  18. Yu L, Wang L, Chen S (2013) Dual character of Toll-like receptor signaling: pro-tumorigenic effects and anti-tumor functions. Biochim Biophys Acta 1835:144–154

    CAS  PubMed  Google Scholar 

  19. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Huang B, Zhao J, Shen SQ, Li HX, He KL, Shen GX, Mayer L, UnkelesS J, Li D, Yuan Y, Zhang GM, Xiong H, Feng ZH (2007) Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res 67:4346–4352

    Article  CAS  PubMed  Google Scholar 

  21. He WG, Liu QY, Wang L, Chen W, Li N, Cao XT (2007) TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44:2850–2859

    Article  CAS  PubMed  Google Scholar 

  22. Nakao Y, Funami K, Kikkawa S, Taniguchi M, Nishiguchi M, Fukumori Y, Seya T, Matsumoto M (2005) Surface-expressed TLR6 participates in the recognition of diacylated lipopeptide and peptidoglycan in human cells. J Immunol 174:1566–1573

    Article  CAS  PubMed  Google Scholar 

  23. Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79

    Article  PubMed Central  PubMed  Google Scholar 

  24. Qiu Y, Ding Y, Zou L, Tan Z, Liu T, Fu X, Xu W (2013) Divergent roles of amino acid residues inside and outside the BB loop affect human Toll-like receptor (TLR)2/2, TLR2/1 and TLR2/6 responsiveness. PLoS One 8:e61508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pinto A, Morello S, Sorrentino R (2011) Lung cancer and Toll-like receptors. Cancer Immunol Immunother 60:1211–1220

    Article  CAS  PubMed  Google Scholar 

  26. Bode C, Diedrich B, Muenster S, Hentschel V, Weisheit C, Rommelsheim K, Hoeft A, Meyer R, Boehm O, Knuefermann P, Baumgarten G (2014) Antibiotics regulate the immune response in both presence and absence of lipopolysaccharide through modulation of Toll-like receptors, cytokine production and phagocytosis in vitro. Int Immunopharmacol 18:27–34

    Article  CAS  PubMed  Google Scholar 

  27. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9:57–63

    Article  CAS  PubMed  Google Scholar 

  29. Rhee SH, Im E, Pothoulakis C (2008) Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer. Gastroenterology 135:518–528

    Article  CAS  PubMed  Google Scholar 

  30. Cai Z, Sanchez A, Shi Z, Zhang T, Liu M, Zhang D (2011) Activation of Toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Res 71:2466–2475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Jeannin P, Duluc D, Delneste Y (2011) IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-gamma. Immunotherapy 3:23–26

    Article  CAS  PubMed  Google Scholar 

  32. Chow MT, Moller A, Smyth MJ (2012) Inflammation and immune surveillance in cancer. Semin Cancer Biol 22:23–32

    Article  CAS  PubMed  Google Scholar 

  33. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  34. Dinarello CA (2011) A clinical perspective of IL-1 beta as the gatekeeper of inflammation. Eur J Immunol 41:1203–1217

    Article  CAS  PubMed  Google Scholar 

  35. Elkabets M, Ribeiro VSG, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN, Vosshenrich CAJ (2010) IL-1 beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40:3347–3357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell crosstalk by signaling through Toll-like receptor 4. J Leukoc Biol 85:996–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nakao S, Kuwano T, Tsutsumi-Miyahara C, Ueda S, Kimura YN, Hamano S, Sonoda KH, Saijo Y, Nukiwa T, Strieter RM, Ishibashi T, Kuwano M, Ono M (2005) Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 115:2979–2991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Voronov E, Carmi Y, Apte RN (2007) Role of IL-1-mediated inflammation in tumor angiogenesis. Adv Exp Med Biol 601:265–270

    Article  PubMed  Google Scholar 

  39. Song XP, Voronov E, Dvorkin T, Fima E, Cagnano E, Benharroch D, Shendler Y, Bjorkdahl O, Segal S, Dinarello CA, Apte RN (2003) Differential effects of IL-1 alpha and IL-1 beta on tumorigenicity patterns and invasiveness. J Immunol 171:6448–6456

    Article  CAS  PubMed  Google Scholar 

  40. Lane D, Matte I, Rancourt C, Piche A (2011) Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer 11:210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lo CW, Chen MW, Hsiao M, Wang SA, Chen CA, Hsiao SM, Chang JS, Lai TC, Rose-John S, Kuo ML, Wei LH (2011) IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Res 71:424–434

    Article  CAS  PubMed  Google Scholar 

  42. Vicari AP, Caux C (2002) Chemokines in cancer. Cytokine Growth Factor Rev 13:143–154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the technical support from National Key Clinical Department of Laboratory Medicine of Jiangsu Province Hospital. This work was supported by National Natural Science Foundation of China (81272324, 81371894), Key Laboratory for Medicine of Jiangsu Province of China (No. XK201114), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Shiyang Pan.

Additional information

Xiaojie Zhang, Juan Xu and Xing Ke have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, J., Ke, X. et al. Expression and function of Toll-like receptors in peripheral blood mononuclear cells from patients with ovarian cancer. Cancer Immunol Immunother 64, 275–286 (2015). https://doi.org/10.1007/s00262-014-1632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1632-x

Keywords

Navigation