Skip to main content
Log in

Effective TRAIL-based immunotherapy requires both plasmacytoid and CD8α dendritic cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

It is now appreciated that there are distinct subsets of dendritic cells (DC) with specialized functions. Plasmacytoid DC (pDC) and CD8α DC can contribute to the priming, activation and function of antitumor CD8 T cells; however, their specific roles and necessity in stimulating antitumor immunity are not clearly understood. We examined the importance of pDC and CD8α DC during immunotherapy of an orthotopic model of metastatic renal cell carcinoma. Immunotherapy that utilizes a recombinant adenovirus encoding tumor necrosis factor-related apoptosis-inducing ligand (Ad5-TRAIL) in combination with an immunostimulatory CpG-containing oligodeoxynucleotide (CpG) resulted in the clearance of primary and metastatic tumors in wild-type (WT) replete BALB/c mice and prolonged survival. In comparison, mice deficient in either pDC (accomplished using a depleting mAb specific for PDCA1) or CD8α DC (through utilization of CD8α DC-deficient Batf3 −/− BALB/c mice) had uncontrolled tumor growth and high mortality after Ad5-TRAIL/CpG administration. The ineffectiveness of Ad5-TRAIL/CpG therapy in the anti-PDCA1-treated and Batf3 −/− BALB/c mice was marked by an altered activation phenotype of the DC, as well as significantly reduced expression of type I IFN-stimulated genes and IL-15/IL-15R complex production. In addition, pDC-depleted and Batf3 −/− BALB/c mice had significantly decreased effector CD8 T cell infiltration in the primary tumor site compared with WT mice after therapy. These data collectively suggest that pDC and CD8α DC carry out independent, but complementary, roles that are necessary to initiate an efficacious antitumor immune response after Ad5-TRAIL/CpG therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ad5-TRAIL:

Recombinant adenovirus encoding TRAIL

Ag:

Antigen

APC:

Antigen presenting cell

Batf3:

Basic leucine zipper transcription factor, ATF-like 3

BV650:

Brilliant Violet 650

CpG:

CpG-containing oligodeoxynucleotide

CXCL10:

C-X-C motif chemokine 10

DC:

Dendritic cell

GFP:

Green fluorescent protein

HBSS:

Hank’s buffered salt solution

IFIT:

Interferon induced proteins with tetratricopeptide repeats

IFN:

Interferon

IFNAR:

Interferon αβ receptor

IL:

Interleukin

IR:

Intrarenal

i.v.:

Intravascular

mAb:

Monoclonal antibody

IRF7:

Interferon regulatory factor 7

ISG15:

Interferon-stimulated gene 15

MDA5:

Melanoma differentiation-associated protein 5

MHC:

Major histocompatibility complex

PBS:

Phosphate-buffered saline

Mx1 (IFI78):

Interferon inducible protein 78

pDC:

Plasmacytoid dendritic cell

PDCA:

Plasmacytoid dendritic cell antigen

PE:

Phycoerytherin

RCC:

Renal cell carcinoma

Rx:

Combination Ad5-TRAIL/CpG therapy

TNF:

Tumor necrosis factor

TRAIL:

TNF-related apoptosis-inducing ligand

WT:

Wild-type

References

  1. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281. doi:10.1038/nri3191

    Article  CAS  PubMed  Google Scholar 

  2. van Mierlo GJ, Boonman ZF, Dumortier HM, den Boer AT, Fransen MF, Nouta J, van der Voort EI, Offringa R, Toes RE, Melief CJ (2004) Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol 173(11):6753–6759

    Article  PubMed  Google Scholar 

  3. de Brito C, Tomkowiak M, Ghittoni R, Caux C, Leverrier Y, Marvel J (2011) CpG promotes cross-presentation of dead cell-associated antigens by pre-CD8alpha+ dendritic cells [corrected]. J Immunol 186(3):1503–1511. doi:10.4049/jimmunol.1001022

    Article  PubMed  Google Scholar 

  4. Shirota H, Klinman DM (2011) CpG-conjugated apoptotic tumor cells elicit potent tumor-specific immunity. Cancer Immunol Immunother 60(5):659–669. doi:10.1007/s00262-011-0973-y

    Article  CAS  PubMed  Google Scholar 

  5. Liu C, Lou Y, Lizee G, Qin H, Liu S, Rabinovich B, Kim GJ, Wang YH, Ye Y, Sikora AG, Overwijk WW, Liu YJ, Wang G, Hwu P (2008) Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice. J Clin Invest 118(3):1165–1175. doi:10.1172/JCI33583

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Nierkens S, den Brok MH, Sutmuller RP, Grauer OM, Bennink E, Morgan ME, Figdor CG, Ruers TJ, Adema GJ (2008) In vivo colocalization of antigen and CpG within dendritic cells is associated with the efficacy of cancer immunotherapy. Cancer Res 68(13):5390–5396. doi:10.1158/0008-5472.CAN-07-6023

    Article  CAS  PubMed  Google Scholar 

  7. Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M, Colonna M, Sibilia M (2012) Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 122(2):575–585. doi:10.1172/JCI61034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192(12):1685–1696

    Article  Google Scholar 

  9. Schulz O, Reis e Sousa C (2002) Cross-presentation of cell-associated antigens by CD8alpha+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 107(2):183–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, Goodwin RG (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682

    Article  CAS  PubMed  Google Scholar 

  11. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163

    Article  CAS  PubMed  Google Scholar 

  12. den Hollander MW, Gietema JA, de Jong S, Walenkamp AM, Reyners AK, Oldenhuis CN, de Vries EG (2013) Translating TRAIL-receptor targeting agents to the clinic. Cancer Lett 332(2):194–201. doi:10.1016/j.canlet.2012.04.007

    Article  Google Scholar 

  13. Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL (2000) Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol 165(5):2886–2894

    Article  CAS  PubMed  Google Scholar 

  14. Griffith TS, Broghammer EL (2001) Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther 4(3):257–266

    Article  CAS  PubMed  Google Scholar 

  15. VanOosten RL, Griffith TS (2007) Activation of tumor-specific CD8+ T Cells after intratumoral Ad5-TRAIL/CpG oligodeoxynucleotide combination therapy. Cancer Res 67(24):11980–11990

    Article  CAS  PubMed  Google Scholar 

  16. Norian LA, Kresowik TP, Rosevear HM, James BR, Rosean TR, Lightfoot AJ, Kucaba TA, Schwarz C, Weydert CJ, Henry MD, Griffith TS (2012) Eradication of metastatic renal cell carcinoma after adenovirus-encoded TNF-related apoptosis-inducing ligand (TRAIL)/CpG immunotherapy. PLoS ONE 7(2):e31085. doi:10.1371/journal.pone.0031085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nierkens S, den Brok MH, Garcia Z, Togher S, Wagenaars J, Wassink M, Boon L, Ruers TJ, Figdor CG, Schoenberger SP, Adema GJ, Janssen EM (2011) Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells. Cancer Res 71(20):6428–6437. doi:10.1158/0008-5472.CAN-11-2154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, Murphy KM (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100. doi:10.1126/science.1164206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hrushesky WJ, Murphy GP (1973) Investigation of a new renal tumor model. J Surg Res 15(5):327–336

    Article  CAS  PubMed  Google Scholar 

  20. James BR, Tomanek-Chalkley A, Askeland EJ, Kucaba T, Griffith TS, Norian LA (2012) Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. J Immunol 189(3):1311–1321. doi:10.4049/jimmunol.1100587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Asselin-Paturel C, Brizard G, Pin JJ, Briere F, Trinchieri G (2003) Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 171(12):6466–6477

    Article  CAS  PubMed  Google Scholar 

  22. Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ, Qunaj L, Griffith TS, Vezys V, Barber DL, Masopust D (2014) Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 9(1):209–222. doi:10.1038/nprot.2014.005

    Article  CAS  PubMed  Google Scholar 

  23. Lou Y, Liu C, Kim GJ, Liu YJ, Hwu P, Wang G (2007) Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178(3):1534–1541

    Article  CAS  PubMed  Google Scholar 

  24. Kuwajima S, Sato T, Ishida K, Tada H, Tezuka H, Ohteki T (2006) Interleukin 15-dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nat Immunol 7(7):740–746. doi:10.1038/ni1348

    Article  CAS  PubMed  Google Scholar 

  25. Salup RR, Wiltrout RH (1986) Adjuvant immunotherapy of established murine renal cancer by interleukin 2-stimulated cytotoxic lymphocytes. Cancer Res 46(7):3358–3363

    CAS  PubMed  Google Scholar 

  26. Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M (2006) Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol 177(5):3260–3265

    Article  CAS  PubMed  Google Scholar 

  27. Vinay DS, Lee SJ, Kim CH, Oh HS, Kwon BS (2012) Exposure of a distinct PDCA-1+ (CD317) B cell population to agonistic anti-4-1BB (CD137) inhibits T and B cell responses both in vitro and in vivo. PLoS ONE 7(11):e50272. doi:10.1371/journal.pone.0050272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bao Y, Han Y, Chen Z, Xu S, Cao X (2011) IFN-alpha-producing PDCA-1+ Siglec-H- B cells mediate innate immune defense by activating NK cells. Eur J Immunol 41(3):657–668. doi:10.1002/eji.201040840

    Article  CAS  PubMed  Google Scholar 

  29. Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant C, Vicari A, O’Garra A, Biron C, Briere F, Trinchieri G (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2(12):1144–1150. doi:10.1038/ni736

    Article  CAS  PubMed  Google Scholar 

  30. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski TF (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 208(10):2005–2016. doi:10.1084/jem.20101159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Basner-Tschakarjan E, Gaffal E, O’Keeffe M, Tormo D, Limmer A, Wagner H, Hochrein H, Tuting T (2006) Adenovirus efficiently transduces plasmacytoid dendritic cells resulting in TLR9-dependent maturation and IFN-alpha production. J Gene Med 8(11):1300–1306. doi:10.1002/jgm.964

    Article  CAS  PubMed  Google Scholar 

  32. Mattei F, Schiavoni G, Belardelli F, Tough DF (2001) IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 167(3):1179–1187

    Article  CAS  PubMed  Google Scholar 

  33. Epardaud M, Elpek KG, Rubinstein MP, Yonekura AR, Bellemare-Pelletier A, Bronson R, Hamerman JA, Goldrath AW, Turley SJ (2008) Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res 68(8):2972–2983. doi:10.1158/0008-5472.CAN-08-0045

    Article  CAS  PubMed  Google Scholar 

  34. Rai D, Pham NL, Harty JT, Badovinac VP (2009) Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. J Immunol 183(12):7672–7681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Seki N, Brooks AD, Carter CR, Back TC, Parsoneault EM, Smyth MJ, Wiltrout RH, Sayers TJ (2002) Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J Immunol 168(7):3484–3492

    Article  CAS  PubMed  Google Scholar 

  36. Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29(34):4752–4765. doi:10.1038/onc.2010.221

    Article  CAS  PubMed  Google Scholar 

  37. Le DT, Pardoll DM, Jaffee EM (2010) Cellular vaccine approaches. Cancer J 16(4):304–310. doi:10.1097/PPO.0b013e3181eb33d7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Fanger NA, Maliszewski CR, Schooley K, Griffith TS (1999) Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 190(8):1155–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Anguille S, Lion E, Tel J, de Vries IJ, Coudere K, Fromm PD, Van Tendeloo VF, Smits EL, Berneman ZN (2012) Interleukin-15-induced CD56(+) myeloid dendritic cells combine potent tumor antigen presentation with direct tumoricidal potential. PLoS ONE 7(12):e51851. doi:10.1371/journal.pone.0051851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tel J, Smits EL, Anguille S, Joshi RN, Figdor CG, de Vries IJ (2012) Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities. Blood 120(19):3936–3944. doi:10.1182/blood-2012-06-435941

    Article  CAS  PubMed  Google Scholar 

  41. Griffith TS, Ferguson TA (2011) Cell death in the maintenance and abrogation of tolerance: the five Ws of dying cells. Immunity 35(4):456–466. doi:10.1016/j.immuni.2011.08.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Krieg A, Kline J (2000) Immune effects and therapeutic applications of CpG motifs in bacterial DNA. Immunopharmacology 48(3):303–305

    Article  CAS  PubMed  Google Scholar 

  43. Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O’Garra A, Liu YJ (2002) The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med 195(7):953–958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Suzuki K, Suda T, Naito T, Ide K, Chida K, Nakamura H (2005) Impaired toll-like receptor 9 expression in alveolar macrophages with no sensitivity to CpG DNA. Am J Respir Crit Care Med 171(7):707–713. doi:10.1164/rccm.200408-1078OC

    Article  PubMed  Google Scholar 

  45. Salio M, Palmowski MJ, Atzberger A, Hermans IF, Cerundolo V (2004) CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J Exp Med 199(4):567–579. doi:10.1084/jem.20031059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Yoneyama H, Matsuno K, Toda E, Nishiwaki T, Matsuo N, Nakano A, Narumi S, Lu B, Gerard C, Ishikawa S, Matsushima K (2005) Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J Exp Med 202(3):425–435. doi:10.1084/jem.20041961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lorenzi S, Mattei F, Sistigu A, Bracci L, Spadaro F, Sanchez M, Spada M, Belardelli F, Gabriele L, Schiavoni G (2011) Type I IFNs control antigen retention and survival of CD8alpha(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J Immunol 186(9):5142–5150. doi:10.4049/jimmunol.1004163

    Article  CAS  PubMed  Google Scholar 

  48. Chu KF, Dupuy DE (2014) Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 14(3):199–208. doi:10.1038/nrc3672

    Article  CAS  PubMed  Google Scholar 

  49. Krieg AM (2012) CpG still rocks! Update on an accidental drug. Nucleic Acid Ther 22(2):77–89. doi:10.1089/nat.2012.0340

    CAS  PubMed  Google Scholar 

  50. Holoch PA, Griffith TS (2009) TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur J Pharmacol 625(1–3):63–72. doi:10.1016/j.ejphar.2009.06.066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Micheau O, Shirley S, Dufour F (2013) Death receptors as targets in cancer. Br J Pharmacol 169(8):1723–1744. doi:10.1111/bph.12238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kristin Anderson (Masopust Lab, Center for Immunology, University of Minnesota) for assistance with the intravascular staining protocol, and Drs. Chris Pennell and John Ohlfest (University of Minnesota) for helpful discussions. We also thank the University of Iowa Gene Transfer Vector Core for the production of the Ad5-TRAIL vector. This work was supported by a University of Minnesota Doctoral Dissertation Fellowship (BRJ), a Kidney Cancer Association Research Scholarship administered by the American Urological Association (ELB), and the National Institutes of Health Grants CA109446 (TSG).

Conflict of interest

B. James, E. Brincks, T. Kucaba, and T. Griffith declare that they have no conflict of interest. L. Boon is Chief Scientific Officer at Bioceros Holding BV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Griffith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, B.R., Brincks, E.L., Kucaba, T.A. et al. Effective TRAIL-based immunotherapy requires both plasmacytoid and CD8α dendritic cells. Cancer Immunol Immunother 63, 685–697 (2014). https://doi.org/10.1007/s00262-014-1548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1548-5

Keywords

Navigation