Skip to main content

Advertisement

Log in

Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

The bone marrow (BM) of breast cancer patients harbors tumor-reactive memory T cells (TCs) with therapeutic potential. We recently described the immunologic effects of adoptive transfer of ex vivo restimulated tumor-reactive memory TCs from the BM of 12 metastasized breast cancer patients in a clinical phase-I study. In this trial, adoptive T cell transfer resulted in the occurrence of circulating tumor antigen-reactive type-1 TCs. We here describe the long-term clinical outcome and its correlation with tumor-specific cellular immune response in 16 metastasized breast cancer patients, including 12 included in the original study.

Methods

Sixteen metastatic breast cancer patients with preexisting tumor-reactive BM memory TCs were included into the study. The study protocol involved one transfusion of TCs which were reactivated in vitro with autologous dendritic cells pulsed with lysates of MCF-7 breast cancer cells as source of tumor antigens. The presence of tumor-reactive memory TCs was analyzed by IFN-γ ELISpot assays.

Results

Tumor-reactive memory TCs in the peripheral blood were induced de novo in 7/16 patients (44 %) after adoptive TC transfer. These patients were considered immunologic responders to the therapy. Positive adoptive immunotherapy (ADI) response was observed significantly more often in patients without bone metastases (p = 0.0051), in patients with high levels of tumor-reactive BM TCs prior to therapy (p = 0.036) and correlated significantly with the estimated numbers of transferred tumor-reactive TCs (p = 0.0021). After the treatment, we observed an overall median survival of 33.8 months in the total cohort with three patients alive at last follow-up and more than 7 years after ADI. Numbers of transferred tumor-reactive TCs correlated significantly with the overall survival of patients (p = 0.017). Patients with an immunologic response to ADI in the peripheral blood had a significantly longer median survival than nonresponders (median survival 58.6 vs. 13.6 months; p = 0.009).

Conclusion

In metastasized breast cancer patients, adoptive transfer of BM TCs can induce the presence of tumor antigen-reactive type-1 TCs in the peripheral blood. Patients with immunologic response after ADI show a significantly longer overall survival. Patients with bone metastases significantly less frequently respond to the treatment and, therefore, might not be optimal candidates for ADI. Although the present study does not yet prove the therapeutic effect of ADI, these findings shed light on the relation between immune response and cancer prognosis and suggest that transfer of reactivated BM TCs might bear therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADI:

Adoptive immunotherapy

BM/BMTC:

Bone marrow/bone marrow T cell

CD:

Cluster of differentiation

DC:

Dendritic cell

ELISpot:

Enzyme-linked immunosorbent spot

GM-CSF:

Granulocyte macrophage colony-stimulating factor

IFN:

Interferon

IL:

Interleukin

PBMC:

Peripheral blood mononuclear cell

TA:

Tumor antigen

TC:

T cell

References

  1. Clare SE, Sener SF, Wilkens W, Goldschmidt R, Merkel D, Winchester DJ (1997) Prognostic significance of occult lymph node metastases in node-negative breast cancer. Ann Surg Oncol 4:447–451

    Article  PubMed  CAS  Google Scholar 

  2. Braun S, Pantel K, Müller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmüller G, Schlimok G (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  PubMed  CAS  Google Scholar 

  3. Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP (1991) Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9:1749–1756

    PubMed  CAS  Google Scholar 

  4. Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V, Umansky V (2001) Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 7:452–458

    Article  PubMed  CAS  Google Scholar 

  5. Beckhove P, Feuerer M, Dolenc M, Schuetz F, Choi C, Sommerfeldt N, Schwendemann J, Ehlert K, Altevogt P, Bastert G, Schirrmacher V, Umansky V (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76

    PubMed  CAS  Google Scholar 

  6. Choi C, Witzens M, Bucur M, Feuerer M, Sommerfeldt N, Trojan A, Ho A, Schirrmacher V, Goldschmidt H, Beckhove P (2005) Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma. Blood 105:2132–2134

    Article  PubMed  CAS  Google Scholar 

  7. Schmitz-Winnenthal FH, Volk C, Z’graggen K, Galindo L, Nummer D, Ziouta Y, Bucur M, Weitz J, Schirrmacher V, Büchler MW, Beckhove P (2005) High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 65:10079–10087

    Article  PubMed  CAS  Google Scholar 

  8. Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U (2003) Natural T cell immunity against cancer. Clin Cancer Res 9:4296–4303

    PubMed  CAS  Google Scholar 

  9. Domschke C, Schuetz F, Ge Y, Seibel T, Falk C, Brors B, Vlodavsky I, Sommerfeldt N, Sinn HP, Kühnle MC, Schneeweiss A, Scharf A, Sohn C, Schirrmacher V, Moldenhauer G, Momburg F, Beckhove P (2009) Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Res 69:8420–8428

    Article  PubMed  CAS  Google Scholar 

  10. Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V, Beckhove P (2003) T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 9:526–534

    Article  PubMed  CAS  Google Scholar 

  11. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  12. Lanzavecchia A, Sallusto F (2000) From synapses to immunological memory: the role of sustained T cell stimulation. Curr Opin Immunol 12:92–98

    Article  PubMed  CAS  Google Scholar 

  13. Geginat J, Sallusto F, Lanzavecchia A (2001) Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J Exp Med 194:1711–1719

    Article  PubMed  CAS  Google Scholar 

  14. Schwendemann J, Choi C, Schirrmacher V, Beckhove P (2005) Dynamic differentiation of activated human peripheral blood CD8 + and CD4 + effector memory T cells. J Immunol 175:1433–1439

    PubMed  CAS  Google Scholar 

  15. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8 + T cells. J Clin Invest 115:1616–1626

    Article  PubMed  CAS  Google Scholar 

  16. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2005) Central memory self/tumor-reactive CD8 + T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576

    Article  PubMed  CAS  Google Scholar 

  17. Dailey M (1998) Expression of T lymphocyte adhesion molecules: regulation during antigen-induced T cell activation and differentiation. Crit Rev Immunol 18:153–184

    Article  PubMed  CAS  Google Scholar 

  18. Schuetz F, Ehlert K, Ge Y, Schneeweiss A, Rom J, Inzkirweli N, Sohn C, Schirrmacher V, Beckhove P (2009) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900

    Article  PubMed  Google Scholar 

  19. Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416

    PubMed  CAS  Google Scholar 

  20. Smith I (2006) Goals of treatment for patients with metastatic breast cancer. Semin Oncol 33(suppl 2):S2–S5

    Article  PubMed  Google Scholar 

  21. Saad ED, Katz A, Buyse M (2010) Overall survival and post-progression survival in advanced breast cancer: a review of recent randomized clinical trials. J Clin Oncol 28:1958–1962

    Article  PubMed  Google Scholar 

  22. Roodman GD (2003) Role of stromal-derived cytokines and growth factors in bone metastasis. Cancer 97(suppl 3):733–738

    Article  Google Scholar 

  23. Chirgwin JM, Guise TA (2000) Molecular mechanisms of tumor-bone interactions in osteolytic metastases [review]. Crit Rev Eukaryot Gene Expr 10:159–178

    Article  PubMed  CAS  Google Scholar 

  24. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  PubMed  CAS  Google Scholar 

  25. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4 + CD25 − naive T cells to CD4 + CD25 + regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  PubMed  CAS  Google Scholar 

  26. Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Bonertz A, Galindo L, Antolovich D, Koch M, Büchler M, Weitz J, Schirrmacher V, Beckhove P (2007) Role of tumor endothelium in CD4 + CD25 + regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 99:1188–1199

    Article  PubMed  CAS  Google Scholar 

  27. Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, Juenger S, Vlodavsky I, Khazaie K, Jaeger D, Reissfelder C, Antolovic D, Aigner M, Koch M, Beckhove P (2009) Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 119:3311–3321

    PubMed  CAS  Google Scholar 

  28. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4 + CD25 + regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    Article  PubMed  CAS  Google Scholar 

  29. Ge Y, Domschke C, Stoiber N, Schott S, Heil J, Rom J, Blumenstein M, Thum J, Sohn C, Schneeweiss A, Beckhove P, Schuetz F (2012) Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol Immunother 61:353–362

    Article  PubMed  CAS  Google Scholar 

  30. Radvanyi LG, Bernatchez C, Zhang M, Fox P, Miller P, Chacon J, Wu RC, Lizee G, Mahoney S, Alvarado G, Glass M, Johnson V, McMannis JD, Shpall EJ, Prieto VG, Papadopoulos NE, Kim KB, Homsi J, Bedikian AY, Hwu WJ, Patel S, Ross MI, Lee JE, Gershenwald JE, Lucci A, Royal R, Cormier JN, Davies MA, Mansaray R, Fulbright OJ, Toth C, Ramachandran R, Wardell S, Gonzalez A, Hwu P (2012) Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. [Epub ahead of print]

  31. Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met O, Hölmich LR, Andersen RS, Hadrup SR, Andersen MH, Straten PT, Svane IM (2012) Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med 10:169

    Article  PubMed  CAS  Google Scholar 

  32. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, Levy D, Kubi A, Hovav E, Chermoshniuk N, Shalmon B, Hardan I, Catane R, Markel G, Apter S, Ben-Nun A, Kuchuk I, Shimoni A, Nagler A, Schachter J (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 16:2646–2655

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Deutsche Forschungsgemeinschaft (SFB 938).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Beckhove.

Additional information

Philipp Beckhove and Florian Schuetz contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domschke, C., Ge, Y., Bernhardt, I. et al. Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial. Cancer Immunol Immunother 62, 1053–1060 (2013). https://doi.org/10.1007/s00262-013-1414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1414-x

Keywords

Navigation