Skip to main content

Advertisement

Log in

Antibody–peptide–MHC fusion conjugates target non-cognate T cells to kill tumour cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Attempts to generate robust anti-tumour cytotoxic T lymphocyte (CTL) responses using immunotherapy are frequently thwarted by exhaustion and anergy of CTL recruited to tumour. One strategy to overcome this is to retarget a population of virus-specific CTL to kill tumour cells. Here, we describe a proof-of-principle study using a bispecific conjugate designed to retarget ovalbumin (OVA)-specific CTL to kill tumour cells via CD20. A single-chain trimer (SCT) consisting of MHCI H-2Kb/SIINFEKL peptide/beta 2 microglobulin/BirA was expressed in bacteria, refolded and chemically conjugated to one (1:1; F2) or two (2:1; F3) anti-hCD20 Fab′ fragments. In vitro, the [SCT × Fab′] (F2 and F3) redirected SIINFEKL-specific OT-I CTL to kill CD20+ target cells, and in the presence of CD20+ target cells to provide crosslinking, they were also able to induce proliferation of OT-I cells. In vivo, activated OT-I CTL could be retargeted to kill [SCT × Fab′]-coated B cells from hCD20 transgenic (hCD20 Tg) mice and also EL4 and B16 mouse tumour cells expressing human CD20 (hCD20). Importantly, in a hCD20 Tg mouse model, [SCT × Fab′] administered systemically were able to retarget activated OT-I cells to deplete normal B cells, and their performance matched that of a bispecific antibody (BsAb) comprising anti-CD3 and anti-CD20. [SCT × Fab′] were also active therapeutically in an EL4 tumour model. Furthermore, measurement of serum cytokine levels suggests that [SCT × Fab′] are associated with a lower level of inflammatory cytokine release than the BsAb and so may be advantageous clinically in terms of reduced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Warren EH, Fujii N, Akatsuka Y, Chaney CN, Mito JK, Loeb KR, Gooley TA, Brown ML, Koo KK, Rosinski KV, Ogawa S, Matsubara A, Appelbaum FR, Riddell SR (2010) Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 115:3869–3878. doi:10.1182/blood-2009-10-248997

    Article  PubMed  CAS  Google Scholar 

  2. Sheikh NA, Petrylak D, Kantoff PW, Dela Rosa C, Stewart FP, Kuan LY, Whitmore JB, Trager JB, Poehlein CH, Frohlich MW, Urdal DL (2012) Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother 62:137–147. doi:10.1007/s00262-012-1317-2

    Article  PubMed  Google Scholar 

  3. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239. doi:10.1200/JCO.2008.16.5449

    Article  PubMed  CAS  Google Scholar 

  4. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308. doi:10.1038/ncr2355

    Article  PubMed  CAS  Google Scholar 

  5. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557. doi:10.1158/1078-0432.CCR-11-0116

    Article  PubMed  CAS  Google Scholar 

  6. Jorritsma A, Schotte R, Coccoris M, de Witte MA, Schumacher TN (2011) Prospects and limitations of T cell receptor gene therapy. Curr Gene Ther 11:276–287. doi:10.2174/156652311796150390

    Article  PubMed  CAS  Google Scholar 

  7. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129. doi:10.1126/science.1129003

    Article  PubMed  CAS  Google Scholar 

  8. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CC, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, VanWaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546. doi:10.1182/blood-2009-03-211714

    Article  PubMed  CAS  Google Scholar 

  9. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF Laurencot CM, Rosenberg SA (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19:620–626. doi:10.1038/mt.2010.272

    Google Scholar 

  10. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924. doi:10.1200/JCO.2010.32.2537

    Google Scholar 

  11. Morgan RA, Dudley ME, Rosenberg SA (2010) Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J 16:336–341. doi:10.1097/PPO.0b013e3181eb3879

    Article  PubMed  CAS  Google Scholar 

  12. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science translational medicine 3:95ra73. doi:10.1126/scitranslmed.3002842

    Article  PubMed  CAS  Google Scholar 

  13. Tibben JG, Boerman OC, Massuger LF, Schijf CP, Claessens RA, Corstens FH (1996) Pharmacokinetics, biodistribution and biological effects of intravenously administered bispecific monoclonal antibody OC/TR F(ab′)2 in ovarian carcinoma patients. Int J Cancer 66:477–483. doi:10.1002/(SICI)1097-0215(19960516)66:4<477:AID-IJC11>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  14. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, Noppeney R, Viardot A, Hess G, Schuler M, Einsele H, Brandl C, Wolf A, Kirchinger P, Klappers P, Schmidt M, Riethmuller G, Reinhardt C, Baeuerle PA, Kufer P (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321:974–977. doi:10.1126/science.1158545

    Article  PubMed  CAS  Google Scholar 

  15. Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S, Horst HA, Raff T, Viardot A, Schmid M, Stelljes M, Schaich M, Degenhard E, Kohne-Volland R, Bruggemann M, Ottmann O, Pfeifer H, Burmeister T, Nagorsen D, Schmidt M, Lutterbuese R, Reinhardt C, Baeuerle PA, Kneba M, Einsele H, Riethmuller G, Hoelzer D, Zugmaier G, Bargou RC (2011) Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29:2493–2498. doi:10.1200/JCO.2010.32.7270

    Article  PubMed  CAS  Google Scholar 

  16. Went P, Vasei M, Bubendorf L, Terracciano L, Tornillo L, Riede U, Kononen J, Simon R, Sauter G, Baeuerle PA (2006) Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer 94:128–135. doi:10.1038/sj.bjc.6602924

    Article  PubMed  CAS  Google Scholar 

  17. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163. doi:10.1073/pnas.0703478104

    Article  PubMed  CAS  Google Scholar 

  18. Cioffi M, Dorado J, Baeuerle PA, Heeschen C (2012) EpCAM/CD3-Bispecific T-cell engaging antibody MT110 eliminates primary human pancreatic cancer stem cells. Clin Cancer Res 18:465–474. doi:10.1158/1078-0432.CCR-11-1270

    Article  PubMed  CAS  Google Scholar 

  19. Yu YY, Netuschil N, Lybarger L, Connolly JM, Hansen TH (2002) Cutting edge: single-chain trimers of MHC class I molecules form stable structures that potently stimulate antigen-specific T cells and B cells. J Immunol 168:3145–3149

    PubMed  CAS  Google Scholar 

  20. Hansen TH, Connolly JM, Gould KG, Fremont DH (2010) Basic and translational applications of engineered MHC class I proteins. Trends Immunol 31:363–369. doi:10.1016/j.it.2010.07.003

    Article  PubMed  CAS  Google Scholar 

  21. Beers SA, Chan CH, James S, French RR, Attfield KE, Brennan CM, Ahuja A, Shlomchik MJ, Cragg MS, Glennie MJ (2008) Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 112:4170–4177. doi:10.1182/blood-2008-04-149161

    Article  PubMed  CAS  Google Scholar 

  22. Chan HT, Hughes D, French RR, Tutt AL, Walshe CA, Teeling JL, Glennie MJ, Cragg MS (2003) CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res 63:5480–5489

    PubMed  CAS  Google Scholar 

  23. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN (1997) Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6:715–726. doi:10.1016/S1074-7613(00)80447-1

    Article  PubMed  CAS  Google Scholar 

  24. Tutt AL, French RR, Illidge TM, Honeychurch J, McBride HM, Penfold CA, Fearon DT, Parkhouse RM, Klaus GG, Glennie MJ (1998) Monoclonal antibody therapy of B cell lymphoma: signaling activity on tumor cells appears more important than recruitment of effectors. J Immunol 161:3176–3185

    PubMed  CAS  Google Scholar 

  25. Lybarger L, Yu YY, Miley MJ, Fremont DH, Myers N, Primeau T, Truscott SM, Connolly JM, Hansen TH (2003) Enhanced immune presentation of a single-chain major histocompatibility complex class I molecule engineered to optimize linkage of a C-terminally extended peptide. J Biol Chem 278:27105–27111. doi:10.1074/jbc.M303716200

    Article  PubMed  CAS  Google Scholar 

  26. Glennie MJ, McBride HM, Worth AT, Stevenson GT (1987) Preparation and performance of bispecific F(ab′ gamma)2 antibody containing thioether-linked Fab′ gamma fragments. J Immunol 139:2367–2375

    PubMed  CAS  Google Scholar 

  27. French RR (2000) How to make bispecific antibodies. Methods Mol Med 40:333–339. doi:10.1007/978-1-59259-076-6_26

    PubMed  CAS  Google Scholar 

  28. Donda A, Cesson V, Mach JP, Corradin G, Primus FJ, Robert B (2003) In vivo targeting of an anti-tumor antibody coupled to antigenic MHC class I complexes induces specific growth inhibition and regression of established syngeneic tumor grafts. Cancer Immun 3:11

    PubMed  Google Scholar 

  29. Ogg GS, Dunbar PR, Cerundolo V, McMichael AJ, Lemoine NR, Savage P (2000) Sensitization of tumour cells to lysis by virus-specific CTL using antibody-targeted MHC class I/peptide complexes. Br J Cancer 82:1058–1062. doi:10.1054/bjoc.1999.1042

    Article  PubMed  CAS  Google Scholar 

  30. Mous R, Savage P, Remmerswaal EB, van Lier RA, Eldering E, van Oers MH (2006) Redirection of CMV-specific CTL towards B-CLL via CD20-targeted HLA/CMV complexes. Leukemia 20:1096–1102. doi:10.1038/sj.leu.2404185

    Article  PubMed  CAS  Google Scholar 

  31. Savage P, Dyson J, Milrain M, Mathews D, King B, Chan HT, Barber L, Epenetos A, Ogg G, McMichael A, Glennie MJ, French RR (2007) Immunotherapy with antibody-targeted HLA class I complexes: results of in vivo cell killing and therapeutic vaccination. Tumour Biol 28:205–211. doi:10.1159/000107416

    Article  PubMed  CAS  Google Scholar 

  32. Savage P, Cowburn P, Clayton A, Man S, Lawson T, Ogg G, Lemoine N, McMichael A, Epenetos A (2002) Anti-viral cytotoxic T cells inhibit the growth of cancer cells with antibody targeted HLA class I/peptide complexes in SCID mice. Int J Cancer 98:561–566. doi:10.1002/ijc.10219

    Article  PubMed  CAS  Google Scholar 

  33. Robert B, Guillaume P, Luescher I, Romero P, Mach JP (2000) Antibody-conjugated MHC class I tetramers can target tumor cells for specific lysis by T lymphocytes. Eur J Immunol 30:3165–3170. doi:10.1002/1521-4141(200011)30:11<3165:AID-IMMU3165>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  34. Knox SJ, Goris ML, Tempero M, Weiden PL, Gentner L, Breitz H, Adams GP, Axworthy D, Gaffigan S, Bryan K, Fisher DR, Colcher D, Horak ID, Weiner LM (2000) Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 6:406–414

    PubMed  CAS  Google Scholar 

  35. Forero A, Weiden PL, Vose JM, Knox SJ, LoBuglio AF, Hankins J, Goris ML, Picozzi VJ, Axworthy DB, Breitz HB, Sims RB, Ghalie RG, Shen S, Meredith RF (2004) Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood 104:227–236. doi:10.1182/blood-2003-09-3284

    Article  PubMed  CAS  Google Scholar 

  36. Robert B, Guillaume P, Luescher I, Doucey MA, Cerottini JC, Romero P, Mach JP (2001) Redirecting anti-viral CTL against cancer cells by surface targeting of monomeric MHC class I-viral peptide conjugated to antibody fragments. Cancer Immun 1:2

    PubMed  CAS  Google Scholar 

  37. Cesson V, Stirnemann K, Robert B, Luescher I, Filleron T, Corradin G, Mach JP, Donda A (2006) Active antiviral T-lymphocyte response can be redirected against tumor cells by antitumor antibody × MHC/viral peptide conjugates. Clin Cancer Res 12:7422–7430. doi:10.1158/1078-0432.CCR-06-1862

    Article  PubMed  CAS  Google Scholar 

  38. Ge Q, Stone JD, Thompson MT, Cochran JR, Rushe M, Eisen HN, Chen J, Stern LJ (2002) Soluble peptide-MHC monomers cause activation of CD8+ T cells through transfer of the peptide to T cell MHC molecules. Proc Natl Acad Sci USA 99:13729–13734. doi:10.1073/pnas.212515299

    Article  PubMed  CAS  Google Scholar 

  39. Lev A, Noy R, Oved K, Novak H, Segal D, Walden P, Zehn D, Reiter Y (2004) Tumor-specific Ab-mediated targeting of MHC-peptide complexes induces regression of human tumor xenografts in vivo. Proc Natl Acad Sci USA 101:9051–9056. doi:10.1073/pnas.0403222101

    Article  PubMed  CAS  Google Scholar 

  40. Ma Z, Sharp KA, Janmey PA, Finkel TH (2008) Surface-anchored monomeric agonist pMHCs alone trigger TCR with high sensitivity. PLoS Biol 6:e43. doi:10.1371/journal.pbio.0060043

    Article  PubMed  Google Scholar 

  41. Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, Roddick JS, King AT, McNicholl F, Savelyeva N, Rice J (2004) DNA vaccines to attack cancer. Proc Natl Acad Sci USA 101(Suppl 2):14646–14652. doi:10.1073/pnas.0404896101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all members of the Laboratory for their help and assistance with this project. Funding was provided by Tenovus Cardiff and Cancer Research UK.

Conflict of interest

The authors confirm that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth R. French.

Additional information

Ben C. King and Angela D. Hamblin are joint first authors and contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, B.C., Hamblin, A.D., Savage, P.M. et al. Antibody–peptide–MHC fusion conjugates target non-cognate T cells to kill tumour cells. Cancer Immunol Immunother 62, 1093–1105 (2013). https://doi.org/10.1007/s00262-013-1408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1408-8

Keywords

Navigation