Skip to main content
Log in

Increased prevalence of tumour infiltrating immune cells in oropharyngeal tumours in comparison to other subsites: relationship to peripheral immunity

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

The nature of the tumour microenvironment immune response in head and neck cancer patients has an important role in tumour development and metastasis, but it is unknown if this differs between cancer subsites or whether it is related to the peripheral immune response.

Methods

Immune cells (CD4, CD8, Foxp3) in head and neck squamous cell carcinoma tissue (HNSCC; n = 66), detected by immunohistochemistry, have been correlated with tumour subsite and immune cells in the peripheral circulation (CD4+CD25HighFoxp3+ Treg and CD4+ T cells), identified using flow cytometry.

Results

Oropharyngeal tumours had a greater number of infiltrating immune cells in both tumour and stroma compared with other subsites, but no difference was observed in the circulating levels. Immune cells in the stroma were positively related to those in the tumour with consistently higher levels in stroma. A strong relationship was found between the number of CD4+ and Foxp3+ cells but not between the number of CD8+ and Foxp3+ cells in the tumour. The number of Foxp3+ cells within the tumour was positively correlated with the percentage of circulating CD4+CD25High cells positive for Foxp3. Late stage laryngeal tumours showed a higher number of Foxp3+ lymphocytes compared with early stage malignancies, and oropharyngeal tumours had more CD4+ cells in node negative tumours compared with node positive ones.

Conclusion

The level of immune cell infiltration in head and neck squamous cell carcinoma appears to be subsite dependent residing primarily in the stroma and is likely to be dependent on the peripheral immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, Westra WH, Chung CH, Jordan RC, Lu C, Kim H, Axelrod R, Silverman CC, Redmond KP, Gillison ML (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363:24–35. doi:10.1056/NEJMoa0912217

    Article  PubMed  CAS  Google Scholar 

  3. Duray A, Demoulin S, Hubert P, Delvenne P, Saussez S (2010) Immune suppression in head and neck cancers: a review. Clin Dev Immunol. doi:10.1155/2010/701657

    PubMed  Google Scholar 

  4. Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125:S272–S283

    Article  PubMed  Google Scholar 

  5. Junker N, Kvistborg P, Køllgaard T, Pt Straten, Anderson MH (2012) Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures. Cell Immunol 273:1–9. doi:10.1016/j.jaci.2009.09.045

    Article  PubMed  CAS  Google Scholar 

  6. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. doi:10.1038/nrc3245

    Article  PubMed  CAS  Google Scholar 

  7. deLeeuw RJ, Kost SE, Kakal JA, Nelson BH (2012) The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 18:3022–3029. doi:10.1158/1078-0432.CCR-11-3216

    Article  PubMed  CAS  Google Scholar 

  8. Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G (2012) Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 124:192–198. doi:org/10.1016/j.ygyno.2011.09.039

    Article  PubMed  Google Scholar 

  9. Anz D, Eiber S, Sholtz C, Endres S, Kirchner T, Bourquin C, Mayr D (2011) In breast cancer, a high ratio of tumour-infiltrating intraepithelial CD8+ to FoxP3+ cells is characteristic for the medullary subtype. Histopathology 59:965–974. doi:10.1111/j.1365-2559.2011.04040.x

    Article  PubMed  Google Scholar 

  10. Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M, Niedobitek G (2009) Distribution of immune cells in head and neck cancer: CD8+ T cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer 9:292–302. doi:10.1186/1471-2407-9-292

    Article  PubMed  Google Scholar 

  11. Uppaluri R, Dunn GP, Lewis JS (2008) Focus on TILs: prognostic significance of tumour infiltrating lymphocytes in head and neck cancers. Cancer Immunol 8:16–25

    Google Scholar 

  12. Whiteside TL (2010) Inhibiting the inhibitors: evaluating agents targeting cancer immunosuppression. Expert Opin Biol Ther 10:1019–1035. doi:10(1517/14712598).2010.482207

    Article  PubMed  CAS  Google Scholar 

  13. Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60:1161–1171. doi:10.1007/s00262-011-1012-8

    Article  PubMed  CAS  Google Scholar 

  14. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  15. Alhamarneh O, Amarnath SMP, Stafford ND, Greenman J (2008) Regulatory T-cells: what role do they play in antitumour immunity in patients with head and neck cancer? Head Neck 30:251–261. doi:10.1002/hed.20739

    Article  PubMed  Google Scholar 

  16. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FoxP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500. doi:10.1038/nri2785

    Article  PubMed  CAS  Google Scholar 

  17. Green VL, Irune E, Prasai A, Alhamarneh O, Greenman J, Stafford ND (2012) Serum IL10, IL12 and circulating CD4+CD25high T regulatory cells in relation to long-term clinical outcome in head and neck squamous cell carcinoma patients. Int J Oncol 40:833–839. doi:10.3892/ijo.2011.1259

    PubMed  CAS  Google Scholar 

  18. Lau KM, Cheng SH, Lo KW, Lee SA, Woo JK, van Hasselt CA, Lee SP, Rickinson AB, Ng MH (2007) Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96:617–622. doi:10.1038/sj.bjc.6603580

    Article  PubMed  CAS  Google Scholar 

  19. Boucek J, Mrkvan T, Chovanec M, Kuchar M, Betka J, Boucek V, Hladikova M, Betka J, Eckschlager T, Rihova B (2010) Regulatory T cells and their prognostic value for patients with squamous cell carcinoma of the head and neck. J Cell Mol Med 14:426–433. doi:10.1111/j.1582-4934.2008.00650.x

    Article  PubMed  CAS  Google Scholar 

  20. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, Mosseri V, Laccourreye O, Bruneval P, Fridman WH, Brasnu DF, Tartour E (2006) Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472. doi:10.1158/1078-0432.CCR-05-1886

    Article  PubMed  CAS  Google Scholar 

  21. Loose D, Signore A, Bonanno E, Vermeersch H, Dierckx R, Deron P, Van de Wiele C (2008) Prognostic value of CD25 expression on lymphocytes and tumor cells in squamous-cell carcinoma of the head and neck. Cancer Biother Radiopharm 23:25–33. doi:10.1089/cbr.2007.0373

    Article  PubMed  CAS  Google Scholar 

  22. Briest F, Berndt A, Clement J, Eggeling F, Grimm S, Friedrich K (2012) Tumour-stroma interactions in tumorigenesis:lessons from stem cell biology. Front Biosci (Elite Ed) 4:1871–1887. doi:org/10.2741/509

    Google Scholar 

  23. Basanta D, Scott JG, Fishman MN, Ayala G, Hayward SW, Anderson ARA (2012) Investigating prostate cancer tumour-stroma interactions: clinical and biological insights from an evolutionary game. Br J Cancer 106:174–181. doi:10.1038/bjc.2011.517

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Fan X, Houghton JM (2007) Tumor Microenvironment: the role of the tumour stroma in cancer. J Cell Biochem 101:805–815. doi:10.1002/jcb.21159

    Article  PubMed  CAS  Google Scholar 

  25. Alhamarneh O, Agada F, Madden L, Stafford N, Greenman J (2011) Serum IL10 and circulating CD4(+)CD25(high) regulatory T cell numbers as predictors of clinical outcome and survival in patients with head and neck squamous cell carcinoma. Head Neck 33:415–423. doi:10.1002/hed.21464

    PubMed  Google Scholar 

  26. Vasievich EA, Huang L (2011) The suppressive tumor microenvironment: a challenge in cancer immunotherapy. Mol Pharm 8:635–641. doi:10.1021/mp1004228

    Article  PubMed  CAS  Google Scholar 

  27. Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12:210–219. doi:10.1038/nrc3186

    Article  PubMed  CAS  Google Scholar 

  28. Westra WH (2009) The changing face of head and neck cancer in the 21st century: the impact of HPV on the epidemiology and pathology of oral cancer. Head Neck Pathol 3:78–81. doi:10.1007/s12105-009-0100-y

    Article  PubMed  Google Scholar 

  29. Distel LV, Fickenscher R, Dietel K, Hung A, Iro H, Zenk J, Nkenke E, Büttner M, Niedobitek G, Grabenbauer GG (2009) Tumour infiltrating lymphocytes in squamous cell carcinoma of the oro- and hypopharynx: prognostic impact may depend on type of treatment and stage of disease. Oral Oncol 45:e167–e174. doi:10.1016/j.oraloncology.2009.05.640

    Article  PubMed  CAS  Google Scholar 

  30. Marur S, D’Souza G, Westra WH, Forastiere AA (2010) HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 11:781–789. doi:10.1016/S1470-2045(10)70017-6

    Article  PubMed  Google Scholar 

  31. Hobbs CGL, Sterne JAC, Bailey M, Heyderman RS, Birchall MA, Thomas SJ (2006) Human papillomavirus and head and neck cancer: a systematic review and meta-analysis. Clin Otolaryngol 31:259–266. doi:10.1111/j.1749-4486.2006.01246.x

    Article  PubMed  CAS  Google Scholar 

  32. Kreimer AR, Clifford GM, Boyle P, Franceschi S (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 14:467–475. doi:10.1158/1055-9965.EPI-04-0551

    Article  PubMed  CAS  Google Scholar 

  33. Evans M, Powell NG (2010) The changing aetiology of head and neck cancer: the role of human papillomavirus. Clin Oncol 22:538–546. doi:10.1016/j.clon.2010.05.024

    Article  CAS  Google Scholar 

  34. Hoffmann TK, Arsov C, Schirlau K, Bas M, Friebe-Hoffmann U, Klussmann JP, Scheckenbach K, Balz V, Bier H, Whiteside TL (2006) T cells specific for HPV16 E7 epitopes in patients with squamous cell carcinoma of the oropharynx. Int J Cancer 118:1984–1991. doi:10.1002/ijc.21565

    Article  PubMed  CAS  Google Scholar 

  35. Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4+CD25highFoxp3+T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301–6311. doi:10.1158/1078-0432.CCR-07-1403

    Article  PubMed  CAS  Google Scholar 

  36. Whiteside TL (2008) The tumour microenvironment and its role in promoting tumour growth. Oncogene 27:5904–5912. doi:10.1038/onc.2008.271

    Article  PubMed  CAS  Google Scholar 

  37. Liu F, Li Y, Ren M, Zhang X, Guo X, Lang R, Gu F, Fu L (2012) Peritumoral FOXP3+ regulatory T cell is sensitive to chemotherapy while intratumoral FOXP3+ regulatory T cell is prognostic predictor of breast cancer patients. Breast Cancer Res Treat 135:459–467. doi:10.1038/onc.2008.271

    Article  PubMed  CAS  Google Scholar 

  38. Mayer CT, Floess S, Baru AM, Lahl K, Huehn J, Sparwasser T (2011) CD8+FoxP3+ Tcells share developmental and phenotypic features with classical CD4+FoxP3+ regulatory T cells but lack potent suppressive activity. Eur J Immunol 41:716–725. doi:10.1002/eji.201040913

    Article  PubMed  CAS  Google Scholar 

  39. Roncarlo MG, Gregori S (2008) Is FOXP3 a bona fide marker for human regulatory T cells? Eur J Immunol 38:925–927. doi:10.1002/eji.200838168

    Article  Google Scholar 

  40. Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T, Barda AK, Gourgoulianis KI, Germenis AE (2008) FoxP3 expression in human cancer cells. J Transl Med 6:19–26. doi:10.1186/1479-5876-6-19

    Article  PubMed  Google Scholar 

  41. Strauss L, Bergmann C, Whiteside TL (2007) Functional and phenotypic characteristics of CD4+CD25HighFoxp3+Treg clones obtained from peripheral blood of patients with cancer. Int J Cancer 121:2473–2483. doi:10.1002/ijc.23001

    Article  PubMed  CAS  Google Scholar 

  42. Schott AK, Pries R, Wollenberg B (2010) Permanent up-regulation of regulatory T-lymphocytes in patients with head and neck cancer. Int J Mol Med 26:67–75. doi:10.3892/ijmm_00000436

    PubMed  CAS  Google Scholar 

  43. Chen KJ, Lin SZ, Zhou Z, Xie HY, Zhou WH, Taki-Eldin A, Zheng SS (2011) Selective Recruitment of regulatory T cell through CCR6-CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PLoS ONE 6:e24671. doi:10.1371/journal.pone.0024671

    Article  PubMed  CAS  Google Scholar 

  44. Gasparoto TH, de Souza Malaspina TS, Benevides L, de Melo EJ Jr, Costa MR, Damante JH, Ikoma MR, Garlet GP, Cavassani KA, da Silva JS, Campanelli AP (2010) Patients with oral squamous cell carcinoma are characterized by increased frequency of suppressive regulatory T cells in the blood and tumor microenvironment. Cancer Immunol Immunother 59:819–828. doi: 10.1007/s00262-009-0803-7

    Google Scholar 

  45. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL (2007) A unique subset of CD4+CD25highFoxP3+T cells secreting interleukin-10 and transforming growth factor-B1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13:4345–4354. doi:10.1158/1078-0432.CCR-07-0472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr Jose and other members of the head and neck surgical team in Hull for consenting the patients and collection of peripheral blood samples and Dr Laszlo Karsai and Karen Bedford for the identification and sectioning of the paraffin tissue blocks as well as helpful advice on tissue morphology. Invaluable statistical advice was obtained from Dr Victoria Allgar HYMS statistical consultancy, and finally, we gratefully acknowledge Yorkshire Cancer Research for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria L. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, V.L., Michno, A., Stafford, N.D. et al. Increased prevalence of tumour infiltrating immune cells in oropharyngeal tumours in comparison to other subsites: relationship to peripheral immunity. Cancer Immunol Immunother 62, 863–873 (2013). https://doi.org/10.1007/s00262-013-1395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1395-9

Keywords

Navigation