Skip to main content
Log in

CXCL12 is a costimulator for CD4+ T cell activation and proliferation in chronic lymphocytic leukemia patients

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Activated T cells from patients with chronic lymphocytic leukemia (CLL) provide survival and proliferative signals to the leukemic clone within lymphoid tissues. Recruitment of both, CLL cells and T lymphocytes, to this supportive microenvironment greatly depends on CXCL12 production by stromal and myeloid cells. CXCL12 also supplies survival stimuli to leukemic B cells, but whether it exerts stimulatory effects on T lymphocytes from CLL patients is unknown. In order to evaluate the capacity of CXCL12 to increase CD4+ T cell activation and proliferation in CLL patients, peripheral blood mononuclear cells were cultured with or without recombinant human CXCL12 or autologous nurse-like cells, and then T cell activation was induced by anti-CD3 mAb. CXCL12 increases the proliferation and the expression of CD25, CD69, CD154, and IFNγ on CD3-stimulated CD4+ T cells from CLL patients, similarly in T cells from ZAP-70+ to ZAP-70 patients. Autologous nurse-like cells establish a close contact with CD4+ T cells and increase their activation and proliferation partially through a CXCR4-dependent mechanism. In addition, we found that activated T cells in the presence of CXCL12 enhance the activation and proliferation of the leukemic clone. In conclusion, CXCL12 production by lymphoid tissue microenvironment in CLL patients might play a key dual role on T cell physiology, functioning not only as a chemoattractant but also as a costimulatory factor for activated T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosati S, Kluin PM (2005) Chronic lymphocytic leukaemia: a review of the immuno-architecture. Curr Top Microbiol Immunol 294:91–107

    PubMed  CAS  Google Scholar 

  2. Soma LA, Craig FE, Swerdlow SH (2006) The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol 37(2):152–159

    Article  PubMed  CAS  Google Scholar 

  3. Ghia P, Circosta P, Scielzo C, Vallario A, Camporeale A, Granziero L, Caligaris-Cappio F (2005) Differential effects on CLL cell survival exerted by different microenvironmental elements. Curr Top Microbiol Immunol 294:135–145

    Article  PubMed  CAS  Google Scholar 

  4. Caligaris-Cappio F (2003) Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 123(3):380–388

    Article  PubMed  Google Scholar 

  5. Shanafelt T, Kay N (2006) T-cell abnormalities in patients with chronic lymphocytic leukemia. Leuk Lymphoma 47(7):1197–1198

    Article  PubMed  CAS  Google Scholar 

  6. Scrivener S, Goddard RV, Kaminski ER, Prentice AG (2003) Abnormal T-cell function in B-cell chronic lymphocytic leukaemia. Leuk Lymphoma 44(3):383–389

    Article  PubMed  CAS  Google Scholar 

  7. Ravandi F, O’Brien S (2006) Immune defects in patients with chronic lymphocytic leukemia. Cancer Immunol Immunother 55(2):197–209

    Article  PubMed  Google Scholar 

  8. Gorgun G, Holderried TA, Zahrieh D, Neuberg D, Gribben JG (2005) Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest 115(7):1797–1805

    Article  PubMed  Google Scholar 

  9. Fluckiger AC, Rossi JF, Bussel A, Bryon P, Banchereau J, Defrance T (1992) Responsiveness of chronic lymphocytic leukemia B cells activated via surface Igs or CD40 to B-cell tropic factors. Blood 80(12):3173–3181

    PubMed  CAS  Google Scholar 

  10. Buske C, Gogowski G, Schreiber K, Rave-Frank M, Hiddemann W, Wormann B (1997) Stimulation of B-chronic lymphocytic leukemia cells by murine fibroblasts, IL-4, anti-CD40 antibodies, and the soluble CD40 ligand. Exp Hematol 25(4):329–337

    PubMed  CAS  Google Scholar 

  11. Bagnara D, Kaufman MS, Calissano C, Marsilio S, Patten PE, Simone R, Chum P, Yan XJ, Allen SL, Kolitz JE, Baskar S, Rader C, Mellstedt H, Rabbani H, Lee A, Gregersen PK, Rai KR, Chiorazzi N (2011) A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 117(20):5463–5472

    Article  PubMed  CAS  Google Scholar 

  12. Nishio M, Endo T, Tsukada N, Ohata J, Kitada S, Reed JC, Zvaifler NJ, Kipps TJ (2005) Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 106(3):1012–1020

    Article  PubMed  CAS  Google Scholar 

  13. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ (2000) Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96(8):2655–2663

    PubMed  CAS  Google Scholar 

  14. Caligaris-Cappio F, Ghia P (2008) Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J Clin Oncol 26(27):4497–4503

    Article  PubMed  CAS  Google Scholar 

  15. Burkle A, Niedermeier M, Schmitt-Graff A, Wierda WG, Keating MJ, Burger JA (2007) Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood 110(9):3316–3325

    Article  PubMed  Google Scholar 

  16. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    Article  PubMed  CAS  Google Scholar 

  17. Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ (2002) Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood 99(3):1030–1037

    Article  PubMed  CAS  Google Scholar 

  18. O’Hayre M, Salanga CL, Kipps TJ, Messmer D, Dorrestein PC, Handel TM (2010) Elucidating the CXCL12/CXCR4 signaling network in chronic lymphocytic leukemia through phosphoproteomics analysis. PLoS One 5(7):e11716

    Article  PubMed  Google Scholar 

  19. Borge M, Nannini PR, Galletti JG, Morande PE, Avalos JS, Bezares RF, Giordano M, Gamberale R (2010) CXCL12-induced chemotaxis is impaired in T cells from patients with ZAP-70-negative chronic lymphocytic leukemia. Haematologica 95(5):768–775

    Article  PubMed  CAS  Google Scholar 

  20. Nanki T, Lipsky PE (2000) Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol 164(10):5010–5014

    PubMed  CAS  Google Scholar 

  21. Gamberale R, Fernandez-Calotti P, Sanjurjo J, Arrossagaray G, Avalos JS, Geffner J, Giordano M (2005) Signaling capacity of FcgammaRII isoforms in B-CLL cells. Leuk Res 29(11):1277–1284

    Article  PubMed  CAS  Google Scholar 

  22. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, Marce S, Lopez-Guillermo A, Campo E, Montserrat E (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348(18):1764–1775

    Article  PubMed  CAS  Google Scholar 

  23. Chattopadhyay PK, Yu J, Roederer M (2006) Live-cell assay to detect antigen-specific CD4+ T-cell responses by CD154 expression. Nat Protoc 1(1):1–6

    Article  PubMed  CAS  Google Scholar 

  24. Crawford MP, Yan SX, Ortega SB, Mehta RS, Hewitt RE, Price DA, Stastny P, Douek DC, Koup RA, Racke MK, Karandikar NJ (2004) High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103(11):4222–4231

    Article  PubMed  CAS  Google Scholar 

  25. Galletti J, Canones C, Morande P, Borge M, Oppezzo P, Geffner J, Bezares R, Gamberale R, Giordano M (2008) Chronic lymphocytic leukemia cells bind and present the erythrocyte protein band 3: possible role as initiators of autoimmune hemolytic anemia. J Immunol 181(5):3674–3683

    PubMed  CAS  Google Scholar 

  26. D’Arena G, Tarnani M, Rumi C, Vaisitti T, Aydin S, De Filippi R, Perrone F, Pinto A, Chiusolo P, Deaglio S, Malavasi F, Laurenti L (2007) Prognostic significance of combined analysis of ZAP-70 and CD38 in chronic lymphocytic leukemia. Am J Hematol 82(9):787–791

    Article  PubMed  Google Scholar 

  27. Del Giudice I, Morilla A, Osuji N, Matutes E, Morilla R, Burford A, Maravelaki S, Owusu-Ankomah K, Swansbury J, A’Hern R, Brito-Babapulle V, Catovsky D (2005) Zeta-chain associated protein 70 and CD38 combined predict the time to first treatment in patients with chronic lymphocytic leukemia. Cancer 104(10):2124–2132

    Article  PubMed  Google Scholar 

  28. Schroers R, Griesinger F, Trumper L, Haase D, Kulle B, Klein-Hitpass L, Sellmann L, Duhrsen U, Durig J (2005) Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia 19(5):750–758

    Article  PubMed  CAS  Google Scholar 

  29. Hus I, Podhorecka M, Bojarska-Junak A, Rolinski J, Schmitt M, Sieklucka M, Wasik-Szczepanek E, Dmoszynska A (2006) The clinical significance of ZAP-70 and CD38 expression in B-cell chronic lymphocytic leukaemia. Ann Oncol 17(4):683–690

    Article  PubMed  CAS  Google Scholar 

  30. Dighiero G, Binet JL (2000) When and how to treat chronic lymphocytic leukemia. N Engl J Med 343(24):1799–1801

    Article  PubMed  CAS  Google Scholar 

  31. Tangye SG, Weston KM, Raison RL (1997) Cytokines and cross-linking of sIgM augment PMA-induced activation of human leukaemic CD5+ B cells. Immunol Cell Biol 75(6):561–567

    Article  PubMed  CAS  Google Scholar 

  32. Buschle M, Campana D, Carding SR, Richard C, Hoffbrand AV, Brenner MK (1993) Interferon gamma inhibits apoptotic cell death in B cell chronic lymphocytic leukemia. J Exp Med 177(1):213–218

    Article  PubMed  CAS  Google Scholar 

  33. Gamberale R, Geffner JR, Giordano M (2002) Immune complexes and apoptosis in B-cell chronic lymphocytic leukemia. Leuk Lymphoma 43(2):251–255

    Article  PubMed  CAS  Google Scholar 

  34. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F, Ruffing N, Montagna L, Piccoli P, Chilosi M, Caligaris-Cappio F (2002) Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 32(5):1403–1413

    Article  PubMed  CAS  Google Scholar 

  35. Patten PE, Buggins AG, Richards J, Wotherspoon A, Salisbury J, Mufti GJ, Hamblin TJ, Devereux S (2008) CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 111(10):5173–5181

    Article  PubMed  CAS  Google Scholar 

  36. Murdoch C (2000) CXCR4: chemokine receptor extraordinaire. Immunol Rev 177:175–184

    Article  PubMed  CAS  Google Scholar 

  37. Molon B, Gri G, Bettella M, Gomez-Mouton C, Lanzavecchia A, Martinez AC, Manes S, Viola A (2005) T cell costimulation by chemokine receptors. Nat Immunol 6(5):465–471

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki Y, Rahman M, Mitsuya H (2001) Diverse transcriptional response of CD4(+) T cells to stromal cell-derived factor (SDF)-1: cell survival promotion and priming effects of SDF-1 on CD4(+) T cells. J Immunol 167(6):3064–3073

    PubMed  CAS  Google Scholar 

  39. Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradfield L, Edgar CE, Hedin KE (2006) CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25(2):213–224

    Article  PubMed  CAS  Google Scholar 

  40. Amara A, Lorthioir O, Valenzuela A, Magerus A, Thelen M, Montes M, Virelizier JL, Delepierre M, Baleux F, Lortat-Jacob H, Arenzana-Seisdedos F (1999) Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine. J Biol Chem 274(34):23916–23925

    Article  PubMed  CAS  Google Scholar 

  41. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280(42):35760–35766

    Article  PubMed  CAS  Google Scholar 

  42. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, Montagna L, Piccoli P, Chilosi M, Caligaris-Cappio F (2001) Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 97(9):2777–2783

    Article  PubMed  CAS  Google Scholar 

  43. Gamberale R, Geffner J, Arrosagaray G, Scolnik M, Salamone G, Trevani A, Vermeulen M, Giordano M (2001) Non-malignant leukocytes delay spontaneous B-CLL cell apoptosis. Leukemia 15(12):1860–1867

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Beatriz Loria and Edit Mabel Horvat for technical assistance. We also thank CLL patients who participated in the study. This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica, CONICET and Fundación Roemmers. M. B. designed and did experiments and created the figures; P. R. N. and P. E. M contributed in the analysis and interpretation of the data; C. J. contributed in the analysis and interpretation of the data and collaborated in confocal microscopy assay; R. F. B. and A. B. provided patients samples and advice; M. G. participated in the project conception and critically reviewed the manuscript, which was written by M. B. and R. G.; R. G. designed and supervised the study.

Conflict of interest

The authors reported no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina Gamberale.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borge, M., Nannini, P.R., Morande, P.E. et al. CXCL12 is a costimulator for CD4+ T cell activation and proliferation in chronic lymphocytic leukemia patients. Cancer Immunol Immunother 62, 113–124 (2013). https://doi.org/10.1007/s00262-012-1320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1320-7

Keywords

Navigation