Skip to main content
Log in

High lipid content of irradiated human melanoma cells does not affect cytokine-matured dendritic cell function

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Gamma irradiation is one of the methods used to sterilize melanoma cells prior to coculturing them with monocyte-derived immature dendritic cells in order to develop antitumor vaccines. However, the changes taking place in tumor cells after irradiation and their interaction with dendritic cells have been scarcely analyzed. We demonstrate here for the first time that after irradiation a fraction of tumor cells present large lipid bodies, which mainly contain triglycerides that are several-fold increased as compared to viable cells as determined by staining with Oil Red O and BODIPY 493/503 and by biochemical analysis. Phosphatidyl-choline, phosphatidyl-ethanolamine and sphingomyelin are also increased in the lipid bodies of irradiated cells. Lipid bodies do not contain the melanoma-associated antigen MART-1. After coculturing immature dendritic cells with irradiated melanoma cells, tumor cells tend to form clumps to which dendritic cells adhere. Under such conditions, dendritic cells are unable to act as stimulating cells in a mixed leukocyte reaction. However, when a maturation cocktail composed of TNF-alpha, IL-6, IL-1beta and prostaglandin E2 is added to the coculture, the tumor cells clumps disaggregate, dendritic cells remain free in suspension and their ability to efficiently stimulate allogeneic lymphocytes is restored. These results help to understand the events following melanoma cell irradiation, shed light about interactions between irradiated cells and dendritic cells, and may help to develop optimized dendritic cell vaccines for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi:10.1038/32588

    Article  PubMed  CAS  Google Scholar 

  2. Steinman RM, Turley S, Mellman I, Inaba K (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191(3):411–416

    Article  PubMed  CAS  Google Scholar 

  3. Delamarre L, Mellman I (2011) Harnessing dendritic cells for immunotherapy. Semin Immunol 23(1):2–11. doi:10.1016/j.smim.2011.02.001

    Article  PubMed  CAS  Google Scholar 

  4. Palucka K, Ueno H, Banchereau J (2011) Recent developments in cancer vaccines. J Immunol 186(3):1325–1331. doi:10.4049/jimmunol.0902539

    Article  PubMed  CAS  Google Scholar 

  5. Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9(5):353–363. doi:10.1038/nri2545

    Article  PubMed  CAS  Google Scholar 

  6. Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671):86–89. doi:10.1038/32183

    Article  PubMed  CAS  Google Scholar 

  7. Ferlazzo G, Semino C, Spaggiari GM, Meta M, Mingari MC, Melioli G (2000) Dendritic cells efficiently cross-prime HLA class I-restricted cytolytic T lymphocytes when pulsed with both apoptotic and necrotic cells but not with soluble cell-derived lysates. Int Immunol 12(12):1741–1747

    Article  PubMed  CAS  Google Scholar 

  8. Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20(16):2149–2182. doi:10.1101/gad.1437206

    Article  PubMed  CAS  Google Scholar 

  9. Dutton-Regester K, Hayward NK (2012) Reviewing the somatic genetics of melanoma: from current to future analytical approaches. Pigment Cell Melanoma Res. doi:10.1111/j.1755-148X.2012.00975.x

    PubMed  Google Scholar 

  10. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, Koslowski M, Kuhn AN, Britten CM, Huber C, Tureci O, Sahin U (2012) Exploiting the mutanome for tumor vaccination. Cancer Res. doi:10.1158/0008-5472.CAN-11-3722

    PubMed  Google Scholar 

  11. Palucka AK, Ueno H, Connolly J, Kerneis-Norvell F, Blanck JP, Johnston DA, Fay J, Banchereau J (2006) Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8 + T-cell immunity. J Immunother 29(5):545–557. doi:10.1097/01.cji.0000211309.90621.8b

    Article  PubMed  CAS  Google Scholar 

  12. Nouri-Shirazi M, Banchereau J, Bell D, Burkeholder S, Kraus ET, Davoust J, Palucka KA (2000) Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J Immunol 165(7):3797–3803

    PubMed  CAS  Google Scholar 

  13. Berard F, Blanco P, Davoust J, Neidhart-Berard EM, Nouri-Shirazi M, Taquet N, Rimoldi D, Cerottini JC, Banchereau J, Palucka AK (2000) Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192(11):1535–1544

    Article  PubMed  CAS  Google Scholar 

  14. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577. doi:10.1126/science.1208347

    Article  PubMed  CAS  Google Scholar 

  15. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4(3):328–332

    Article  PubMed  CAS  Google Scholar 

  16. von Euw EM, Barrio MM, Furman D, Levy EM, Bianchini M, Peguillet I, Lantz O, Vellice A, Kohan A, Chacon M, Yee C, Wainstok R, Mordoh J (2008) A phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10 -1082 promoter genotype as predictor of disease progression. J Transl Med 6:6. doi:10.1186/1479-5876-6-6

    Article  Google Scholar 

  17. Neidhardt-Berard EM, Berard F, Banchereau J, Palucka AK (2004) Dendritic cells loaded with killed breast cancer cells induce differentiation of tumor-specific cytotoxic T lymphocytes. Breast Cancer Res 6(4):R322–R328. doi:10.1186/bcr794

    Article  PubMed  CAS  Google Scholar 

  18. von Euw EM, Barrio MM, Furman D, Bianchini M, Levy EM, Yee C, Li Y, Wainstok R, Mordoh J (2007) Monocyte-derived dendritic cells loaded with a mixture of apoptotic/necrotic melanoma cells efficiently cross-present gp100 and MART-1 antigens to specific CD8(+) T lymphocytes. J Transl Med 5:19. doi:10.1186/1479-5876-5-19

    Article  Google Scholar 

  19. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90(8):3539–3543

    Article  PubMed  CAS  Google Scholar 

  20. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, Knight SC, Padhya T, McCaffrey TV, McCaffrey JC, Antonia S, Fishman M, Ferris RL, Kagan VE, Gabrilovich DI (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16(8):880–886. doi:10.1038/nm.2172

    Article  PubMed  CAS  Google Scholar 

  21. Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL, Miki T, Rosenberg SA (1994) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 91(9):3515–3519

    Article  PubMed  CAS  Google Scholar 

  22. Barrio MM, de Motta PT, Kaplan J, von Euw EM, Bravo AI, Chacon RD, Mordoh J (2006) A phase I study of an allogeneic cell vaccine (VACCIMEL) with GM-CSF in melanoma patients. J Immunother 29(4):444–454. doi:10.1097/01.cji.0000208258.79005.5f

    Article  PubMed  CAS  Google Scholar 

  23. Levy EM, Sycz G, Arriaga JM, Barrio MM, von Euw EM, Morales SB, Gonzalez M, Mordoh J, Bianchini M (2009) Cetuximab-mediated cellular cytotoxicity is inhibited by HLA-E membrane expression in colon cancer cells. Innate Immun 15(2):91–100. doi:10.1177/1753425908101404

    Article  PubMed  CAS  Google Scholar 

  24. Resnicoff M, Medrano EE, Podhajcer OL, Bravo AI, Bover L, Mordoh J (1987) Subpopulations of MCF7 cells separated by Percoll gradient centrifugation: a model to analyze the heterogeneity of human breast cancer. Proc Natl Acad Sci USA 84(20):7295–7299

    Article  PubMed  CAS  Google Scholar 

  25. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509

    PubMed  CAS  Google Scholar 

  26. Aloisi JD SJ, Fried B (1990) Quantification of lipids by one-dimensional TLC on Preadsorbent High Performance Silica Gel Plates J Liq Chrom Relat Tech 13 (20):3949–3961

    Google Scholar 

  27. Sterin-Speziale N, Kahane VL, Setton CP, Fernandez MC, Speziale EH (1992) Compartmental study of rat renal phospholipid metabolism. Lipids 27(1):10–14

    Article  PubMed  CAS  Google Scholar 

  28. Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, Da Poian AT, Bozza PT, Gamarnik AV (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5(10):e1000632. doi:10.1371/journal.ppat.1000632

    Article  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  30. Kruth HS (1984) Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil-red-O-negative particles. Am J Pathol 114(2):201–208

    PubMed  CAS  Google Scholar 

  31. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16(3):202–208

    Article  PubMed  CAS  Google Scholar 

  32. De Maziere AM, Muehlethaler K, van Donselaar E, Salvi S, Davoust J, Cerottini JC, Levy F, Slot JW, Rimoldi D (2002) The melanocytic protein Melan-A/MART-1 has a subcellular localization distinct from typical melanosomal proteins. Traffic 3(9):678–693

    Article  PubMed  Google Scholar 

  33. Steinman RM, Gutchinov B, Witmer MD, Nussenzweig MC (1983) Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med 157(2):613–627

    Article  PubMed  CAS  Google Scholar 

  34. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142. doi:10.1002/eji.1830271209

    Article  PubMed  CAS  Google Scholar 

  35. Toh HC, Wang WW, Chia WK, Kvistborg P, Sun L, Teo K, Phoon YP, Soe Y, Tan SH, Hee SW, Foo KF, Ong S, Koo WH, Zocca MB, Claesson MH (2009) Clinical benefit of allogeneic melanoma cell lysate-pulsed autologous dendritic cell vaccine in MAGE-positive colorectal cancer patients. Clin Cancer Res 15(24):7726–7736. doi:10.1158/1078-0432.CCR-09-1537

    Article  PubMed  CAS  Google Scholar 

  36. Walther TC, Farese RV Jr (2009) The life of lipid droplets. Biochim Biophys Acta 1791(6):459–466. doi:10.1016/j.bbalip.2008.10.009

    Article  PubMed  CAS  Google Scholar 

  37. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40(5):325–438

    Article  PubMed  CAS  Google Scholar 

  38. Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP (2008) Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68(6):1732–1740. doi:10.1158/0008-5472.CAN-07-1999

    Article  PubMed  CAS  Google Scholar 

  39. Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9(4):358–365. doi:10.1097/01.mco.0000232894.28674.30

    Article  PubMed  CAS  Google Scholar 

  40. Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66(12):5977–5980. doi:10.1158/0008-5472.CAN-05-4673

    Article  PubMed  CAS  Google Scholar 

  41. Bozza PT, Viola JP (2010) Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fatty Acids 82(4–6):243–250. doi:10.1016/j.plefa.2010.02.005

    Article  PubMed  CAS  Google Scholar 

  42. Bostrom P, Andersson L, Rutberg M, Perman J, Lidberg U, Johansson BR, Fernandez-Rodriguez J, Ericson J, Nilsson T, Boren J, Olofsson SO (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 9(11):1286–1293. doi:10.1038/ncb1648

    Article  PubMed  Google Scholar 

  43. Al-Saffar NM, Titley JC, Robertson D, Clarke PA, Jackson LE, Leach MO, Ronen SM (2002) Apoptosis is associated with triacylglycerol accumulation in Jurkat T-cells. Br J Cancer 86(6):963–970. doi:10.1038/sj.bjc.6600188

    Article  PubMed  CAS  Google Scholar 

  44. Exton JH (1994) Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212(1):26–42

    Article  PubMed  CAS  Google Scholar 

  45. Liao YP, Wang CC, Butterfield LH, Economou JS, Ribas A, Meng WS, Iwamoto KS, McBride WH (2004) Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173(4):2462–2469

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Fundación Sales, Fundación Cáncer (FUCA), Fundación Pedro F. Mosoteguy, Fundación María Calderón de la Barca, Argentina and by INSERM (Institut National de la Santé et de la Recherche Médicale), by an Evaluation-Orientation de la Coopération Scientifique Sud (ECOS Sud)/Secretaría de Promoción Científica y Tecnológica (SEPCyT) exchange program grant (A03S03) from the Argentine SEPCyT and the French Ministère des Affaires Etrangères and by a grant from an INSERM/CONICET exchange program. JM, MMB, EML and LAQA are members of CONICET. FPMR, LMPL and MPR are fellows of the same Institution. GAP is a fellow of ANPCyT. JLT is a member of INSERM. AMC was supported by FUCA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Mordoh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizzurro, G.A., Madorsky Rowdo, F.P., Pujol-Lereis, L.M. et al. High lipid content of irradiated human melanoma cells does not affect cytokine-matured dendritic cell function. Cancer Immunol Immunother 62, 3–15 (2013). https://doi.org/10.1007/s00262-012-1295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1295-4

Keywords

Navigation