Skip to main content

Advertisement

Log in

IL-15 augments antitumoral activity of an ErbB2/HER2 cancer vaccine targeted to professional antigen-presenting cells

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Targeted delivery of tumor-associated antigens to professional antigen-presenting cells (APC) is being explored as a strategy to enhance the antitumoral activity of cancer vaccines. Here, we generated a cell-based system for continuous in vivo production of a CTLA-4-ErbB2 fusion protein as a therapeutic vaccine. The chimeric CTLA-4-ErbB2 molecule contains the extracellular domain of CTLA-4 for specific targeting to costimulatory B7 molecules on the surface of APC, genetically fused to residues 1–222 of human ErbB2 (HER2) as an antigenic determinant. In wild-type BALB/c mice, inoculation of syngeneic epithelial cells continuously secreting the CTLA-4-ErbB2 fusion vaccine in the vicinity of subcutaneously growing ErbB2-expressing renal cell carcinomas resulted in the rejection of established tumors, accompanied by the induction of ErbB2-specific antibodies and cytotoxic T cells. In contrast, treatment with CTLA-4-ErbB2 vaccine-secreting producer cells alone was insufficient to induce tumor rejection in ErbB2-transgenic WAP-Her-2 F1 mice, which are characterized by pronounced immunological tolerance to the human self-antigen. When CTLA-4-ErbB2 producer cells were modified to additionally secrete interleukin (IL)-15, antigen-specific antitumoral activity of the vaccine in WAP-Her-2 F1 mice was restored, documented by an increase in survival, and marked inhibition of the growth of established ErbB2-expressing, but not antigen-negative tumors. Our results demonstrate that continuous in vivo expression of an APC-targeted ErbB2 fusion protein results in antigen-specific immune responses and antitumoral activity in tumor-bearing hosts, which is augmented by the pleiotropic cytokine IL-15. This provides a rationale for further development of this approach for specific cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pejawar-Gaddy S, Finn OJ (2008) Cancer vaccines: accomplishments and challenges. Crit Rev Oncol Hematol 67:93–102

    Article  PubMed  Google Scholar 

  2. Keler T, He L, Ramakrishna V, Champion B (2007) Antibody-targeted vaccines. Oncogene 26:3758–3767

    Article  PubMed  CAS  Google Scholar 

  3. Tacken PJ, de Vries IJ, Torensma R, Figdor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802. doi:10.1038/nri2173

    Article  PubMed  CAS  Google Scholar 

  4. Romani N, Thurnher M, Idoyaga J, Steinman RM, Flacher V (2010) Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy. Immunol Cell Biol 88:424–430

    Article  PubMed  Google Scholar 

  5. Palucka K, Banchereau J, Mellman I (2010) Designing vaccines based on biology of human dendritic cell subsets. Immunity 33:464–478

    Article  PubMed  CAS  Google Scholar 

  6. Rohrbach F, Weth R, Kursar M, Sloots A, Mittrücker HW, Wels WS (2005) Targeted delivery of the ErbB2/HER2 tumor antigen to professional APCs results in effective antitumor immunity. J Immunol 174:5481–5489

    PubMed  CAS  Google Scholar 

  7. Sloots A, Mastini C, Rohrbach F, Weth R, Curcio C, Burkhardt U, Jäger E, Forni G, Cavallo F, Wels WS (2008) DNA vaccines targeting tumor antigens to B7 molecules on antigen-presenting cells induce protective antitumor immunity and delay onset of HER-2/Neu-driven mammary carcinoma. Clin Cancer Res 14:6933–6943. doi:10.1158/1078-0432.CCR-08-1257

    Article  PubMed  CAS  Google Scholar 

  8. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  PubMed  CAS  Google Scholar 

  9. Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9:463–475. doi:10.1038/nrc2656

    Article  PubMed  CAS  Google Scholar 

  10. Esteva FJ, Yu D, Hung MC, Hortobagyi GN (2010) Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nat Rev Clin Oncol 7:98–107

    Article  PubMed  CAS  Google Scholar 

  11. Peoples GE, Holmes JP, Hueman MT, Mittendorf EA, Amin A, Khoo S, Dehqanzada ZA, Gurney JM, Woll MM, Ryan GB, Storrer CE, Craig D, Ioannides CG, Ponniah S (2008) Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res 14:797–803

    Article  PubMed  CAS  Google Scholar 

  12. Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, Coveler AL, Childs JS, Higgins DM, Fintak PA, dela Rosa C, Tietje K, Link J, Waisman J, Salazar LG (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27:4685–4692. doi:10.1200/JCO.2008.20.6789

    Article  PubMed  CAS  Google Scholar 

  13. Emens LA, Asquith JM, Leatherman JM, Kobrin BJ, Petrik S, Laiko M, Levi J, Daphtary MM, Biedrzycki B, Wolff AC, Stearns V, Disis ML, Ye X, Piantadosi S, Fetting JH, Davidson NE, Jaffee EM (2009) Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 27:5911–5918. doi:10.1200/JCO.2009.23.3494

    Article  PubMed  CAS  Google Scholar 

  14. Boggio K, Nicoletti G, Di Carlo E, Cavallo F, Landuzzi L, Melani C, Giovarelli M, Rossi I, Nanni P, De Giovanni C, Bouchard P, Wolf S, Modesti A, Musiani P, Lollini PL, Colombo MP, Forni G (1998) Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J Exp Med 188:589–596

    Article  PubMed  CAS  Google Scholar 

  15. Piechocki MP, Ho YS, Pilon S, Wei WZ (2003) Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J Immunol 171:5787–5794

    PubMed  CAS  Google Scholar 

  16. Jacob JB, Quaglino E, Radkevich-Brown O, Jones RF, Piechocki MP, Reyes JD, Weise A, Amici A, Wei WZ (2010) Combining human and rat sequences in her-2 DNA vaccines blunts immune tolerance and drives antitumor immunity. Cancer Res 70:119–128. doi:10.1158/0008-5472.CAN-09-2554

    Article  PubMed  CAS  Google Scholar 

  17. Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6:595–601. doi:10.1038/nri1901

    Article  PubMed  CAS  Google Scholar 

  18. Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Cole DJ (2002) Systemic administration of IL-15 augments the antigen-specific primary CD8+ T cell response following vaccination with peptide-pulsed dendritic cells. J Immunol 169:4928–4935

    PubMed  Google Scholar 

  19. Pulendran B, Dillon S, Joseph C, Curiel T, Banchereau J, Mohamadzadeh M (2004) Dendritic cells generated in the presence of GM-CSF plus IL-15 prime potent CD8+ Tc1 responses in vivo. Eur J Immunol 34:66–73. doi:10.1002/eji.200324567

    Article  PubMed  CAS  Google Scholar 

  20. Dubsky P, Saito H, Leogier M, Dantin C, Connolly JE, Banchereau J, Palucka AK (2007) IL-15-induced human DC efficiently prime melanoma-specific naive CD8+ T cells to differentiate into CTL. Eur J Immunol 37:1678–1690

    Article  PubMed  CAS  Google Scholar 

  21. Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B (1988) Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J 7:2089–2095

    PubMed  CAS  Google Scholar 

  22. Maurer-Gebhard M, Schmidt M, Azemar M, Altenschmidt U, Stöcklin E, Wels W, Groner B (1998) Systemic treatment with a recombinant erbB-2 receptor-specific tumor toxin efficiently reduces pulmonary metastases in mice injected with genetically modified carcinoma cells. Cancer Res 58:2661–2666

    PubMed  CAS  Google Scholar 

  23. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C, Grez M, Thrasher AJ (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813. doi:10.1089/10430340252898984

    Article  PubMed  CAS  Google Scholar 

  24. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875. doi:10.1038/nbt0997-871

    Article  PubMed  CAS  Google Scholar 

  25. Sloots A, Wels WS (2005) Recombinant derivatives of the human high-mobility group protein HMGB2 mediate efficient nonviral gene delivery. FEBS J 272:4221–4236. doi:10.1111/j.1742-4658.2005.04834.x

    Article  PubMed  CAS  Google Scholar 

  26. Schultz-Thater E, Noppen C, Gudat F, Durmuller U, Zajac P, Kocher T, Heberer M, Spagnoli GC (2000) NY-ESO-1 tumour associated antigen is a cytoplasmic protein detectable by specific monoclonal antibodies in cell lines and clinical specimens. Br J Cancer 83:204–208

    Article  PubMed  CAS  Google Scholar 

  27. Harwerth IM, Wels W, Marte BM, Hynes NE (1992) Monoclonal antibodies against the extracellular domain of the erbB-2 receptor function as partial ligand agonists. J Biol Chem 267:15160–15167

    PubMed  CAS  Google Scholar 

  28. Nagata Y, Furugen R, Hiasa A, Ikeda H, Ohta N, Furukawa K, Nakamura H, Furukawa K, Kanematsu T, Shiku H (1997) Peptides derived from a wild-type murine proto-oncogene c-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts. J Immunol 159:1336–1343

    PubMed  CAS  Google Scholar 

  29. Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277–286

    Article  PubMed  CAS  Google Scholar 

  30. Roth A, Rohrbach F, Weth R, Frisch B, Schuber F, Wels WS (2005) Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct. Br J Cancer 92:1421–1429

    Article  PubMed  CAS  Google Scholar 

  31. Epardaud M, Elpek KG, Rubinstein MP, Yonekura AR, Bellemare-Pelletier A, Bronson R, Hamerman JA, Goldrath AW, Turley SJ (2008) Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells. Cancer Res 68:2972–2983. doi:10.1158/0008-5472.CAN-08-0045

    Article  PubMed  CAS  Google Scholar 

  32. Zhang M, Yao Z, Dubois S, Ju W, Muller JR, Waldmann TA (2009) Interleukin-15 combined with an anti-CD40 antibody provides enhanced therapeutic efficacy for murine models of colon cancer. Proc Natl Acad Sci USA 106:7513–7518. doi:10.1073/pnas.0902637106

    Article  PubMed  CAS  Google Scholar 

  33. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  PubMed  CAS  Google Scholar 

  34. Freeman GJ, Borriello F, Hodes RJ, Reiser H, Gribben JG, Ng JW, Kim J, Goldberg JM, Hathcock K, Laszlo G et al (1993) Murine B7–2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med 178:2185–2192

    Article  PubMed  CAS  Google Scholar 

  35. Butler SP, O’Sickey TK, Lord ST, Lubon H, Gwazdauskas FC, Velander WH (2004) Secretion of recombinant human fibrinogen by the murine mammary gland. Transgenic Res 13:437–450

    Article  PubMed  CAS  Google Scholar 

  36. Hynes NE, Taverna D, Harwerth IM, Ciardiello F, Salomon DS, Yamamoto T, Groner B (1990) Epidermal growth factor receptor, but not c-erbB-2, activation prevents lactogenic hormone induction of the beta-casein gene in mouse mammary epithelial cells. Mol Cell Biol 10:4027–4034

    PubMed  CAS  Google Scholar 

  37. Brandt R, Wong AM, Hynes NE (2001) Mammary glands reconstituted with Neu/ErbB2 transformed HC11 cells provide a novel orthotopic tumor model for testing anti-cancer agents. Oncogene 20:5459–5465. doi:10.1038/sj.onc.1204709

    Article  PubMed  CAS  Google Scholar 

  38. Steel JC, Ramlogan CA, Yu P, Sakai Y, Forni G, Waldmann TA, Morris JC (2010) Interleukin-15 and its receptor augment dendritic cell vaccination against the neu oncogene through the induction of antibodies partially independent of CD4 help. Cancer Res 70:1072–1081. doi:10.1158/0008-5472.CAN-09-1301

    Article  PubMed  CAS  Google Scholar 

  39. Porzia A, Lanzardo S, Citti A, Cavallo F, Forni G, Santoni A, Galandrini R, Paolini R (2010) Attenuation of PI3 K/Akt-mediated tumorigenic signals through PTEN activation by DNA vaccine-induced anti-ErbB2 antibodies. J Immunol 184:4170–4177. doi:10.4049/jimmunol.0903375

    Article  PubMed  CAS  Google Scholar 

  40. Ben-Kasus T, Schechter B, Lavi S, Yarden Y, Sela M (2009) Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc Natl Acad Sci USA 106:3294–3299. doi:10.1073/pnas.0812059106

    Article  PubMed  CAS  Google Scholar 

  41. Spiridon CI, Ghetie MA, Uhr J, Marches R, Li JL, Shen GL, Vitetta ES (2002) Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin Cancer Res 8:1720–1730

    PubMed  CAS  Google Scholar 

  42. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6:443–446. doi:10.1038/74704

    Article  PubMed  CAS  Google Scholar 

  43. Kim PS, Armstrong TD, Song H, Wolpoe ME, Weiss V, Manning EA, Huang LQ, Murata S, Sgouros G, Emens LA, Reilly RT, Jaffee EM (2008) Antibody association with HER-2/neu-targeted vaccine enhances CD8 T cell responses in mice through Fc-mediated activation of DCs. J Clin Invest 118:1700–1711. doi:10.1172/JCI34333

    Article  PubMed  CAS  Google Scholar 

  44. Radkevich-Brown O, Jacob J, Kershaw M, Wei WZ (2009) Genetic regulation of the response to Her-2 DNA vaccination in human Her-2 transgenic mice. Cancer Res 69:212–218. doi:10.1158/0008-5472.CAN-08-3092

    Article  PubMed  CAS  Google Scholar 

  45. Teague RM, Sather BD, Sacks JA, Huang MZ, Dossett ML, Morimoto J, Tan X, Sutton SE, Cooke MP, Ohlen C, Greenberg PD (2006) Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors. Nat Med 12:335–341. doi:10.1038/nm1359

    Article  PubMed  CAS  Google Scholar 

  46. Rolla S, Nicolo C, Malinarich S, Orsini M, Forni G, Cavallo F, Ria F (2006) Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice. J Immunol 177:7626–7633

    PubMed  CAS  Google Scholar 

  47. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL (2005) Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 115:1177–1187. doi:10.1172/JCI23134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Deutsche Forschungsgemeinschaft (DFG) GRK1172 and the LOEWE-Schwerpunkt Onkogene Signaltransduktion Frankfurt (OSF). We thank Dr. Christiane Sahm, Georg-Speyer-Haus, for lentiviral transfer vector pS-IL15-IEW; Dr. Giulio C. Spagnoli, University of Basel, for NY-ESO-1-specific mAb D8.38; Dr. Cristina Mastini, University of Turin for help with the set-up of WAP-Her-2 mice, the staff of the Georg-Speyer-Haus animal facility, for maintaining the transgenic mouse colony; Dr. Kurt Schönfeld, Georg-Speyer-Haus, for helpful suggestions and establishment of depletion experiments; and Mrs. Annemarie Schimpf, Mrs. Barbara Uherek, and Mr. Thorsten Geyer, Georg-Speyer-Haus, for excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried S. Wels.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 632 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhardt, U.E., Sloots, A., Jakobi, V. et al. IL-15 augments antitumoral activity of an ErbB2/HER2 cancer vaccine targeted to professional antigen-presenting cells. Cancer Immunol Immunother 61, 1473–1484 (2012). https://doi.org/10.1007/s00262-012-1215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1215-7

Keywords

Navigation