Skip to main content
Log in

CT angiography and 3D imaging in aortoiliac occlusive disease: collateral pathways in Leriche syndrome

  • Pictorial Essay
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Collateral pathways in aortoiliac occlusive disease are essential for arterial blood flow to the abdomen, pelvis, and lower extremities. These pathways can be broadly divided into systemic–systemic, visceral–visceral, and systemic–visceral collateral networks. MDCT angiography is the most commonly used modality for the diagnostic evaluation of patients with aortoiliac occlusive disease, allowing excellent evaluation of stenotic arterial segments, as well as beautifully illustrating resulting collateral pathways (particularly when utilizing 3D reconstruction techniques). This article seeks to familiarize radiologists with the most common patterns of aortoiliac occlusion and associated arterial collateral pathways utilizing CT angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allison MA, Ho E, Denenberg JO, et al. (2007) Ethnic-specific prevalence of peripheral arterial disease in the United States. Am J Prev Med 32:328–333

    Article  PubMed  Google Scholar 

  2. Conley JE, Kennedy WF (1960) Collateral arterial circulation in the legs. Arch Surg 81:348–356

    Article  CAS  PubMed  Google Scholar 

  3. Hardman RL, Lopera JE, Cardan RA, Trimmer CK, Josephs SC (2011) Common and rare collateral pathways in aortoiliac occlusive disease: a pictorial essay. AJR Am J Roentgenol 197:W519–W524

    Article  PubMed  Google Scholar 

  4. Yurdakul M, Tola M, Ozdemir E, Bayazit M, Cumhur T (2006) Internal thoracic artery-inferior epigastric artery as a collateral pathway in aortoiliac occlusive disease. J Vasc Surg 43:707–713

    Article  PubMed  Google Scholar 

  5. Hirose H, Nakano H, Amano A, Takahashi A (2002) Coronary artery bypass grafting for patients with aortoiliac occlusive disease. Vasc Endovasc Surg 36:285–290

    Article  Google Scholar 

  6. Krupski WC, Sumchai A, Effeney DJ, Ehrenfeld WK (1984) The importance of abdominal wall collateral blood vessels. Planning incisions and obtaining arteriography. Arch Surg 119:854–857

    Article  CAS  PubMed  Google Scholar 

  7. Gaylis H (1992) Interruption of critical aortoiliac circulation during nonvascular operations: a cause of acute limb-threatening ischemia. J Vasc Surg 15:256–257

    Article  CAS  PubMed  Google Scholar 

  8. Dietzek AM, Goldsmith J, Veith FJ, Sanchez LA, Gupta SK, Wengerter KR (1990) Interruption of critical aortoiliac collateral circulation during nonvascular operations: a cause of acute limb-threatening ischemia. J Vasc Surg 12:645–651. discussion 652643

  9. Moore JE Jr, Xu C, Glagov S, Zarins CK, Ku DN (1994) Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110:225–240

    Article  CAS  PubMed  Google Scholar 

  10. Wooten C, Hayat M, du Plessis M, et al. (2014) Anatomical significance in aortoiliac occlusive disease. Clin Anat 27:1264–1274

    Article  PubMed  Google Scholar 

  11. Shakeri AB, Tubbs RS, Shoja MM, Nosratinia H, Oakes WJ (2007) Aortic bifurcation angle as an independent risk factor for aortoiliac occlusive disease. Folia Morphol (Warsz) 66:181–184

    CAS  Google Scholar 

  12. Figley MM, Muller RF (1957) The arteries of the abdomen, pelvis, and thigh. I. Normal roentgenographic anatomy. II. Collateral circulation in obstructive arterial disease. Am J Roentgenol Radium Ther Nucl Med 77:296–311

    CAS  PubMed  Google Scholar 

  13. Edwards EA, Lemay M (1955) Occlusion patterns and collaterals in arteriosclerosis of the lower aorta and iliac arteries. Surgery 38:950–963

    CAS  PubMed  Google Scholar 

  14. Akinwande O, Ahmad A, Ahmad S, Coldwell D (2015) Review of pelvic collateral pathways in aorto-iliac occlusive disease: demonstration by CT angiography. Acta Radiol 56:419–427

    Article  PubMed  Google Scholar 

  15. Chait A, Moltz A, Nelson JH Jr (1968) The collateral arterial circulation in the pelvis. An angiographic study. Am J Roentgenol Radium Ther Nucl Med 102:392–400

    Article  CAS  PubMed  Google Scholar 

  16. Iliopoulos JI, Hermreck AS, Thomas JH, Pierce GE (1989) Hemodynamics of the hypogastric arterial circulation. J Vasc Surg 9:637–641. discussion 641632

  17. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45 Suppl S:S5–67

  18. Ahmed S, Raman SP, Fishman EK (2016) Three-dimensional MDCT angiography for the assessment of arteriovenous grafts and fistulas in hemodialysis access. Diagn Interv Imaging 97:297–306

    Article  CAS  PubMed  Google Scholar 

  19. Raman SP, Fishman EK (2016) Computed tomography angiography of the small bowel and mesentery. Radiol Clin N Am 54:87–100

    Article  PubMed  Google Scholar 

  20. Raman SP, Neyman EG, Horton KM, Eckhauser FE, Fishman EK (2012) Superior mesenteric artery syndrome: spectrum of CT findings with multiplanar reconstructions and 3-D imaging. Abdom Imaging 37:1079–1088

    Article  PubMed  Google Scholar 

  21. Schindera ST, Graca P, Patak MA, et al. (2009) Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 44:650–655

    Article  PubMed  Google Scholar 

  22. Liu PS, Platt JF (2014) CT angiography in the abdomen: a pictorial review and update. Abdom Imaging 39:196–214

    Article  CAS  PubMed  Google Scholar 

  23. Wintersperger B, Jakobs T, Herzog P, et al. (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  CAS  PubMed  Google Scholar 

  24. Duan Y, Wang X, Yang X, et al. (2013) Diagnostic efficiency of low-dose CT angiography compared with conventional angiography in peripheral arterial occlusions. AJR Am J Roentgenol 201:W906–W914

    Article  PubMed  Google Scholar 

  25. Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJ (2009) Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA 301:415–424

    Article  CAS  PubMed  Google Scholar 

  26. Renker M, Nance JW Jr, Schoepf UJ, et al. (2011) Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 260:390–399

    Article  PubMed  Google Scholar 

  27. Fishman EK, Ney DR, Heath DG, et al. (2006) Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 26:905–922

    Article  PubMed  Google Scholar 

  28. Addis KA, Hopper KD, Iyriboz TA, et al. (2001) CT angiography: in vitro comparison of five reconstruction methods. AJR Am J Roentgenol 177:1171–1176

    Article  CAS  PubMed  Google Scholar 

  29. Mesurolle B, Qanadli SD, El Hajjam M, et al. (2004) Occlusive arterial disease of abdominal aorta and lower extremities: comparison of helical CT angiography with transcatheter angiography. Clin Imaging 28:252–260

    Article  PubMed  Google Scholar 

  30. Albrecht T, Foert E, Holtkamp R, et al. (2007) 16-MDCT angiography of aortoiliac and lower extremity arteries: comparison with digital subtraction angiography. AJR Am J Roentgenol 189:702–711

    Article  PubMed  Google Scholar 

  31. Heuschmid M, Krieger A, Beierlein W, et al. (2003) Assessment of peripheral arterial occlusive disease: comparison of multislice-CT angiography (MS-CTA) and intraarterial digital subtraction angiography (IA-DSA). Eur J Med Res 8:389–396

    PubMed  Google Scholar 

  32. Cernic S, Pozzi Mucelli F, Pellegrin A, Pizzolato R, Cova MA (2009) Comparison between 64-row CT angiography and digital subtraction angiography in the study of lower extremities: personal experience. Radiol Med 114:1115–1129

    Article  CAS  PubMed  Google Scholar 

  33. Schernthaner R, Stadler A, Lomoschitz F, et al. (2008) Multidetector CT angiography in the assessment of peripheral arterial occlusive disease: accuracy in detecting the severity, number, and length of stenoses. Eur Radiol 18:665–671

    Article  CAS  PubMed  Google Scholar 

  34. Kramer JH, Grist TM (2012) Peripheral MR angiography. Magn Reson Imaging Clin N Am 20:761–776

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Hannah Ahn, Medical Illustrator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Ahmed.

Ethics declarations

Funding

No funding was received for this study.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Statement of informed consent was not applicable since the manuscript does not contain any patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Raman, S.P. & Fishman, E.K. CT angiography and 3D imaging in aortoiliac occlusive disease: collateral pathways in Leriche syndrome. Abdom Radiol 42, 2346–2357 (2017). https://doi.org/10.1007/s00261-017-1137-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1137-0

Keywords

Navigation