Skip to main content
Log in

A urologist’s perspective on prostate cancer imaging: past, present, and future

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Prostate cancer is unique in that unlike other solid organ malignancies, only recently has imaging been employed to routinely detect and localize disease. The introduction of transrectal ultrasound was a significant development, transitioning digitally guided prostate biopsies to ultrasound guidance. The arrival of multiparametric MRI has become the next major step, transforming the way Urologist’s diagnose, stage, and treat prostate cancer. Recent recommendations against PSA screening have changed the landscape of urologic oncology with the changing needs being reflected in the initiation of additional robust imaging techniques at different time points in prostate cancer care. The current review aims to provide a clinical perspective in the history, current standard of care, and novel imaging modalities in the evaluation of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dellavedova T (2016) Prostatic specific antigen. From its early days until becoming a prostate cancer biomarker. Arch Esp Urol 69(1):19–23

    PubMed  Google Scholar 

  2. Taneja SS (2004) Imaging in the diagnosis and management of prostate cancer. Rev Urol 6(3):101–113

    PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  4. Eggener SE, et al. (2015) Gleason 6 prostate cancer: translating biology into population health. J Urol 194(3):626–634

    Article  PubMed  PubMed Central  Google Scholar 

  5. George AK, Pinto PA (2015) Editorial comment. Urology 85(2):429

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fascelli M, et al. (2015) The role of MRI in active surveillance for prostate cancer. Curr Urol Rep 16(6):42

    Article  PubMed  Google Scholar 

  7. Lee F, et al. (1985) Transrectal ultrasound in the diagnosis of prostate cancer: location, echogenicity, histopathology, and staging. Prostate 7(2):117–129

    Article  CAS  PubMed  Google Scholar 

  8. Ragde H, Aldape HC, Bagley CM Jr (1988) Ultrasound-guided prostate biopsy. Biopty gun superior to aspiration. Urology 32(6):503–506

    Article  CAS  PubMed  Google Scholar 

  9. Frye TP, Pinto PA, George AK (2015) Optimizing patient population for MP-MRI and fusion biopsy for prostate cancer detection. Curr Urol Rep 16(7):50

    Article  PubMed  Google Scholar 

  10. Rothwax JT, et al. (2014) Multiparametric MRI in biopsy guidance for prostate cancer: fusion-guided. Biomed Res Int 2014:439171

    Article  PubMed  PubMed Central  Google Scholar 

  11. Watanabe H, et al. (1974) Development and application of new equipment for transrectal ultrasonography. J Clin Ultrasound 2(2):91–98

    Article  CAS  PubMed  Google Scholar 

  12. Resnick MI, Willard JW, Boyce WH (1980) Transrectal ultrasonography in the evaluation of patients with prostatic carcinoma. J Urol 124(4):482–484

    CAS  PubMed  Google Scholar 

  13. Rifkin MD, et al. (1983) Endoscopic ultrasonic evaluation of the prostate using a transrectal probe: prospective evaluation and acoustic characterization. Radiology 149(1):265–271

    Article  CAS  PubMed  Google Scholar 

  14. Griffiths GJ, et al. (1987) The ultrasound appearances of prostatic cancer with histological correlation. Clin Radiol 38(3):219–227

    Article  CAS  PubMed  Google Scholar 

  15. Egawa S, et al. (1992) Unusual hyperechoic appearance of prostate cancer on transrectal ultrasonography. Br J Urol 69(2):169–174

    Article  CAS  PubMed  Google Scholar 

  16. Lee F, et al. (1989) Hypoechoic lesions of the prostate: clinical relevance of tumor size, digital rectal examination, and prostate-specific antigen. Radiology 170(1 Pt 1):29–32

    Article  CAS  PubMed  Google Scholar 

  17. Hodge KK, et al. (1989) Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 142(1):71–74 (discussion 74–5)

    CAS  PubMed  Google Scholar 

  18. Barrett T, et al. (2012) Value of the hemorrhage exclusion sign on T1-weighted prostate MR images for the detection of prostate cancer. Radiology 263(3):751–757

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barentsz JO, et al. (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kirkham AP, Emberton M, Allen C (2006) How good is MRI at detecting and characterising cancer within the prostate. Eur Urol 50(6):1163–1174 (discussion 1175)

    Article  PubMed  Google Scholar 

  21. McNeal JE, et al. (1988) Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 12(12):897–906

    Article  CAS  PubMed  Google Scholar 

  22. Sakai I, et al. (2006) Analysis of differences in clinicopathological features between prostate cancers located in the transition and peripheral zones. Int J Urol 13(4):368–372

    Article  PubMed  Google Scholar 

  23. Iremashvili V, et al. (2012) Prostate cancers of different zonal origin: clinicopathological characteristics and biochemical outcome after radical prostatectomy. Urology 80(5):1063–1069

    Article  PubMed  Google Scholar 

  24. Beyersdorff D, et al. (2002) Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology 224(3):701–706

    Article  PubMed  Google Scholar 

  25. Presti JC Jr, et al. (1996) Local staging of prostatic carcinoma: comparison of transrectal sonography and endorectal MR imaging. AJR Am J Roentgenol 166(1):103–108

    Article  PubMed  Google Scholar 

  26. Stattin P, et al. (2015) Improving the specificity of screening for lethal prostate cancer using prostate-specific antigen and a panel of kallikrein markers: a nested case-control study. Eur Urol 68(2):207–213

    Article  CAS  PubMed  Google Scholar 

  27. Tinzl M, et al. (2004) DD3PCA3 RNA analysis in urine–a new perspective for detecting prostate cancer. Eur Urol 46(2):182–186 (discussion 187)

    Article  CAS  PubMed  Google Scholar 

  28. Catalona WJ, et al. (2011) A multicenter study of [-2]pro-prostate specific antigen combined with prostate specific antigen and free prostate specific antigen for prostate cancer detection in the 2.0 to 10.0 ng/ml prostate specific antigen range. J Urol 185(5):1650–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loeb S, Catalona WJ (2014) The prostate health index: a new test for the detection of prostate cancer. Ther Adv Urol 6(2):74–77

    Article  PubMed  PubMed Central  Google Scholar 

  30. McDonald ML, Parsons JK (2016) 4-kallikrein test and kallikrein markers in prostate cancer screening. Urol Clin North Am 43(1):39–46

    Article  PubMed  Google Scholar 

  31. Mohler JL, et al. (2016) Prostate Cancer, version 1.2016. J Natl Compr Cancer Netw 14(1):19–30

    Google Scholar 

  32. Serefoglu EC, et al. (2013) How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer? Can Urol Assoc J 7(5–6):E293–E298

    PubMed  PubMed Central  Google Scholar 

  33. Volkin D, et al. (2014) Multiparametric magnetic resonance imaging (MRI) and subsequent MRI/ultrasonography fusion-guided biopsy increase the detection of anteriorly located prostate cancers. BJU Int 114(6b):E43–E49

    Article  CAS  PubMed  Google Scholar 

  34. Nevoux P, et al. (2012) Quantitative tissue analyses of prostate cancer foci in an unselected cystoprostatectomy series. BJU Int 110(4):517–523

    Article  PubMed  Google Scholar 

  35. Tawadros T, Valerio M (2016) Addressing overtreatment following the diagnosis of localized prostate cancer. Expert Rev Anticancer Ther 16:373–374

    Article  CAS  PubMed  Google Scholar 

  36. Rastinehad AR, et al. (2014) Improving detection of clinically significant prostate cancer: magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy. J Urol 191(6):1749–1754

    Article  PubMed  Google Scholar 

  37. Siddiqui MM, et al. (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. Jama 313(4):390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Turkbey B, et al. (2014) Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging 39(6):1443–1448

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lourenco AP, et al. (2014) Improving outcomes of screening breast MRI with practice evolution: initial clinical experience with 3T compared to 1.5T. J Magn Reson Imaging 39(3):535–539

    Article  PubMed  Google Scholar 

  40. Torricelli P, et al. (2008) 3-T MRI with phased-array coil in local staging of prostatic cancer. Acad Radiol 15(9):1118–1125

    Article  PubMed  Google Scholar 

  41. Costa DN, et al. (2016) Comparison of prostate cancer detection at 3-T MRI with and without an endorectal coil: a prospective, paired-patient study. Urol Oncol. doi:10.1016/j.urolonc.2016.02.009

    PubMed  Google Scholar 

  42. Weinreb JC, et al. (2016) PI-RADS prostate imaging: reporting and data system: 2015, Version 2. Eur Urol 69(1):16–40

    Article  PubMed  Google Scholar 

  43. Dwivedi DK, et al. (2016) Stratification of the aggressiveness of prostate cancer using pre-biopsy multiparametric MRI (mpMRI). NMR Biomed 29:232–238

    Article  CAS  PubMed  Google Scholar 

  44. Muller BG, et al. (2015) Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging. Radiology 277(3):741–750

    Article  PubMed  Google Scholar 

  45. Weinreb JC, et al. (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251(1):122–133

    Article  PubMed  PubMed Central  Google Scholar 

  46. Park SY, et al. (2016) Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology 2:151133

    Article  Google Scholar 

  47. Rastinehad AR, et al. (2016) Reproducibility of multiparametric MRI and fusion-guided prostate biopsy: multi-institutional external validation by a propensity score matched cohort. J Urol. doi:10.1016/j.juro.2015.12.102

    PubMed  Google Scholar 

  48. George AK, Pinto PA, Rais-Bahrami S (2014) Multiparametric MRI in the PSA screening era. Biomed Res Int 2014:465816

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kongnyuy M, et al. (2015) A case of In-bore transperineal MRI-guided prostate biopsy of a patient with ileal pouch-anal anastomosis. Case Rep Urol 2015:676930

    PubMed  PubMed Central  Google Scholar 

  50. Kwak JT, et al. (2015) Is visual registration equivalent to semiautomated registration in prostate biopsy? Biomed Res Int 2015:394742

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kongnyuy M, et al. (2016) Magnetic resonance imaging-ultrasound fusion-guided prostate biopsy: review of technology, techniques, and outcomes. Curr Urol Rep 17(4):32

    Article  PubMed  Google Scholar 

  52. Sonn GA, et al. (2014) Initial experience with electronic tracking of specific tumor sites in men undergoing active surveillance of prostate cancer. Urol Oncol 32(7):952–957

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sankineni S, et al. (2015) Posterior subcapsular prostate cancer: identification with mpMRI and MRI/TRUS fusion-guided biopsy. Abdom Imaging 40(7):2557–2565

    Article  PubMed  Google Scholar 

  54. Kongnyuy M, Sidana A, George AK, et al. (2016) The significance of anterior prostate lesions on multiparametric magnetic resonance imaging in African American men. Urol Oncol. doi:10.1016/j.urolonc.2015.12.018

    PubMed  Google Scholar 

  55. Delongchamps NB, et al. (2013) Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol 189(2):493–499

    Article  PubMed  Google Scholar 

  56. Vourganti S, et al. (2012) Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol 188(6):2152–2157

    Article  PubMed  PubMed Central  Google Scholar 

  57. Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17(6):1471–1474

    Article  PubMed  Google Scholar 

  58. Muller BG, et al. (2015) Multiparametric magnetic resonance imaging-transrectal ultrasound fusion-assisted biopsy for the diagnosis of local recurrence after radical prostatectomy. Urol Oncol 33(10):425.e1–425.e6

    Article  Google Scholar 

  59. Gupta RT, et al. (2014) Comparing 3-T multiparametric MRI and the partin tables to predict organ-confined prostate cancer after radical prostatectomy. Urol Oncol 32(8):1292–1299

    Article  PubMed  Google Scholar 

  60. Raskolnikov D, et al. (2015) The role of magnetic resonance image guided prostate biopsy in stratifying men for risk of extracapsular extension at radical prostatectomy. J Urol 194(1):105–111

    Article  PubMed  Google Scholar 

  61. Raskolnikov D, et al. (2014) Multiparametric magnetic resonance imaging and image-guided biopsy to detect seminal vesicle invasion by prostate cancer. J Endourol 28(11):1283–1289

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thoeny HC, et al. (2014) Metastases in normal-sized pelvic lymph nodes: detection with diffusion-weighted MR imaging. Radiology 273(1):125–135

    Article  PubMed  Google Scholar 

  63. Saokar A, et al. (2010) Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging. Clin Imaging 34(5):361–366

    Article  PubMed  Google Scholar 

  64. Lecouvet FE, et al. (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99 m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62(1):68–75

    Article  PubMed  Google Scholar 

  65. Hovels AM, et al. (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63(4):387–395

    Article  CAS  PubMed  Google Scholar 

  66. Carlin BI, Andriole GL (2000) The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 88(12 Suppl):2989–2994

    Article  CAS  PubMed  Google Scholar 

  67. Bjurlin MA, et al. (2015) Imaging and evaluation of patients with high-risk prostate cancer. Nat Rev Urol 12(11):617–628

    Article  PubMed  Google Scholar 

  68. Network (2016) N.C.C. NCCN guidelines version 2.2016 prostate cancer. www.NCCN.org

  69. Damle NA, et al. (2013) The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 31(4):262–269

    Article  PubMed  Google Scholar 

  70. Langsteger W, et al. (2012) Imaging of bone metastases in prostate cancer: an update. Q J Nucl Med Mol Imaging 56(5):447–458

    CAS  PubMed  Google Scholar 

  71. Perlmutter MA, Lepor H (2007) Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev Urol 9(Suppl 1):S3–S8

    PubMed  PubMed Central  Google Scholar 

  72. Hawkins T, Halewood MM (2008) Technical note: identifying the prostate cancer ‘superscan’ by quantitative skeletal scintigraphy. Nucl Med Commun 29(7):654–659

    Article  PubMed  Google Scholar 

  73. Buckley O, et al. (2007) 99mTc bone scintigraphy superscans: a review. Nucl Med Commun 28(7):521–527

    Article  PubMed  Google Scholar 

  74. Leung D, et al. (2014) Imaging approaches with advanced prostate cancer: techniques and timing. Can J Urol 21(2 Supp 1):42–47

    PubMed  Google Scholar 

  75. Ghanem N, et al. (2005) Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol 55(1):41–55

    Article  CAS  PubMed  Google Scholar 

  76. Shen G, et al. (2014) Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 43(11):1503–1513

    Article  PubMed  Google Scholar 

  77. Mitchell CR, et al. (2013) Operational characteristics of (11)c-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol 189(4):1308–1313

    Article  PubMed  Google Scholar 

  78. Evangelista L, et al. (2013) Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 63(6):1040–1048

    Article  PubMed  Google Scholar 

  79. Evangelista L, et al. (2013) Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med 38(5):305–314

    Article  PubMed  Google Scholar 

  80. Turkbey B, et al. (2015) Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin. doi:10.3322/caac.21333

    PubMed  Google Scholar 

  81. Park BH, et al. (2014) Influence of magnetic resonance imaging in the decision to preserve or resect neurovascular bundles at robotic assisted laparoscopic radical prostatectomy. J Urol 192(1):82–88

    Article  PubMed  Google Scholar 

  82. Tabatabaei S, et al. (2011) Prostate cancer imaging: what surgeons, radiation oncologists, and medical oncologists want to know. AJR Am J Roentgenol 196(6):1263–1266

    Article  PubMed  Google Scholar 

  83. Natarajan S, et al. (2015) Focal laser ablation of prostate cancer: phase I clinical trial. J Urol. doi:10.1016/j.juro.2015.12.083

    Google Scholar 

  84. Jarow JP, et al. (2015) Partial gland ablation for prostate cancer: report of a Food and Drug Administration, American Urological Association, and Society of Urologic Oncology Public Workshop. Urology. doi:10.1016/j.urology.2015.11.018

    PubMed  Google Scholar 

  85. Ghai S, et al. (2015) Real-time MRI-guided focused ultrasound for focal therapy of locally confined low-risk prostate cancer: feasibility and preliminary outcomes. AJR Am J Roentgenol 205(2):W177–W184

    Article  PubMed  Google Scholar 

  86. Ahmed HU, et al. (2015) Focal ablation targeted to the index lesion in multifocal localised prostate cancer: a prospective development study. Eur Urol 68(6):927–936

    Article  PubMed  Google Scholar 

  87. Okoro C, et al. (2015) Magnetic resonance imaging/transrectal ultrasonography fusion prostate biopsy significantly outperforms systematic 12-core biopsy for prediction of total magnetic resonance imaging tumor volume in active surveillance patients. J Endourol 29(10):1115–1121

    Article  PubMed  Google Scholar 

  88. WaltonDiaz A, et al. (2015) Use of serial multiparametric magnetic resonance imaging in the management of patients with prostate cancer on active surveillance. Urol Oncol 33(5):202.e1–202.e7

    Article  Google Scholar 

  89. Raskolnikov D, et al. (2015) The role of image guided biopsy targeting in patients with atypical small acinar proliferation. J Urol 193(2):473–478

    Article  PubMed  Google Scholar 

  90. Chelluri R, et al. (2016) Prostate cancer diagnosis on repeat MRI-TRUS Fusion biopsy of benign lesions: recommendations for repeat sampling. J Urol. doi:10.1016/j.juro.2016.02.066

    Google Scholar 

  91. Hu JC, et al. (2014) Targeted prostate biopsy in select men for active surveillance: do the Epstein criteria still apply? J Urol 192(2):385–390

    Article  PubMed  PubMed Central  Google Scholar 

  92. Moyer VA (2012) Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 157(2):120–134

    Article  PubMed  Google Scholar 

  93. Wysock JS, et al. (2016) Predictive value of negative 3T multiparametric prostate MRI on 12 core biopsy results. BJU Int. doi:10.1111/bju.13427

    PubMed  Google Scholar 

  94. GrenaboBergdahl A, et al. (2015) Role of magnetic resonance imaging in prostate cancer screening: a pilot study within the Goteborg randomised screening trial. Eur Urol. doi:10.1016/j.eururo.2015.12.006

    Google Scholar 

  95. Shakir NA, et al. (2014) Identification of threshold prostate specific antigen levels to optimize the detection of clinically significant prostate cancer by magnetic resonance imaging/ultrasound fusion guided biopsy. J Urol 192(6):1642–1648

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fascelli M, et al. (2015) Combined biparametric prostate MRI and prostate specific antigen in the detection of prostate cancer: a validation study in a biopsy naive patient population. Urology. doi:10.1016/j.urology.2015.09.035

    PubMed  Google Scholar 

  97. Ciccarese C, et al. (2016) Metabolic alterations in renal and prostate cancer. Curr Drug Metab 17(2):150–155

    Article  CAS  PubMed  Google Scholar 

  98. Albers MJ, et al. (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68(20):8607–8615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nelson SJ, et al. (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Trans Med 5(198):198ra108

    Article  CAS  Google Scholar 

  100. Postema A, et al. (2015) Multiparametric ultrasound in the detection of prostate cancer: a systematic review. World J Urol 33(11):1651–1659

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kuenen MP, et al. (2013) Contrast-ultrasound dispersion imaging for prostate cancer localization by improved spatiotemporal similarity analysis. Ultrasound Med Biol 39(9):1631–1641

    Article  CAS  PubMed  Google Scholar 

  102. Eckersley RJ, et al. (2002) Quantitative microbubble enhanced transrectal ultrasound as a tool for monitoring hormonal treatment of prostate carcinoma. Prostate 51(4):256–267

    Article  PubMed  Google Scholar 

  103. Ahmad S, et al. (2013) Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc 27(9):3280–3287

    Article  PubMed  Google Scholar 

  104. Haseman MK, Reed NL, Rosenthal SA (1996) Monoclonal antibody imaging of occult prostate cancer in patients with elevated prostate-specific antigen. Positron emission tomography and biopsy correlation. Clin Nucl Med 21(9):704–713

    Article  CAS  PubMed  Google Scholar 

  105. Barrett JA, et al. (2013) First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med 54(3):380–387

    Article  CAS  PubMed  Google Scholar 

  106. Rowe SP, et al. (2016) Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naive and castration-resistant metastatic prostate cancer. J Nucl Med 57(1):46–53

    Article  PubMed  PubMed Central  Google Scholar 

  107. Maurer T, et al. (2015) Diagnostic Efficacy of Gallium-PSMA positron emission tomography compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. doi:10.1016/j.juro.2015.12.025

    PubMed  Google Scholar 

  108. Dietlein M, et al. (2015) Comparison of [(18)F]DCFPyL and [(68)Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer. Mol Imaging Biol 17(4):575–584

    Article  PubMed  PubMed Central  Google Scholar 

  109. Eiber M, et al. (2016) Simultaneous Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. doi:10.1016/j.eururo.2015.12.053

    PubMed  Google Scholar 

  110. Harisinghani MG, et al. (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute, Center for Cancer Research, and the Center for Interventional Oncology. NIH and Philips Healthcare have a cooperative research and development agreement. NIH and Philips share intellectual property in the field. This research was also made possible through the National Institutes of Health Medical Research Scholars Program, a public–private partnership supported jointly by the NIH and generous contributions to the Foundation for the NIH from Pfizer Inc., The Doris Duke Charitable Foundation, The Alexandria Real Estate Equities, Inc. and Mr. and Mrs. Joel S. Marcus, and the Howard Hughes Medical Institute, as well as other private donors. For a complete list, please visit the Foundation website at: http://fnih.org/work/education-training-0/medical-research-scholars-program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvin K. George.

Ethics declarations

Conflict of Interest

Arvin K. George, Baris Turkbey, Subin G. Valayil, Akhil Muthigi, Francesca Mertan, Michael Kongnyuy, and Peter A. Pinto declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, A.K., Turkbey, B., Valayil, S.G. et al. A urologist’s perspective on prostate cancer imaging: past, present, and future. Abdom Radiol 41, 805–816 (2016). https://doi.org/10.1007/s00261-016-0751-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0751-6

Keywords

Navigation