Skip to main content

Advertisement

Log in

Metastatic renal cell carcinoma imaging evaluation in the era of anti-angiogenic therapies

  • Invited article
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

During the last decade, the arsenal of anti-angiogenic (AAG) agents used to treat metastatic renal cell carcinoma (RCC) has grown and revolutionized the treatment of metastatic RCC, leading to improved overall survival compared to conventional chemotherapy and traditional immunotherapy agents. AAG agents include inhibitors of vascular endothelial growth factor receptor signaling pathways and mammalian target of rapamycin inhibitors. Both of these classes of targeted agents are considered cytostatic rather than cytotoxic, inducing tumor stabilization rather than marked tumor shrinkage. As a result, decreases in tumor size alone are often minimal and/or occur late in the course of successful AAG therapy, while tumor devascularization is a distinct feature of AAG therapy. In successful AAG therapy, tumor devascularization manifests on computed tomography images as a composite of a decrease in tumor size, a decrease in tumor attenuation, and the development of tumor necrosis. In this article, we review Response Evaluation Criteria in Solid Tumors (RECIST)—the current standard of care for tumor treatment response assessment which is based merely on changes in tumor length—and its assessment of metastatic RCC tumor response in the era of AAG therapies. We then review the features of an ideal tumor imaging biomarker for predicting metastatic RCC response to a particular AAG agent and serving as a longitudinal tumor response assessment tool. Finally, a discussion of the more recently proposed imaging response criteria and new imaging trends in metastatic RCC response assessment will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brufau BP, Cerqueda CS, Villalba LB, et al. (2013) Metastatic renal cell carcinoma: radiologic findings and assessment of response to targeted antiangiogenic therapy by using multidetector CT. Radiographics 33(6):1691–1716

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  3. Heilbrun ME, Remer EM, Casalino DD, et al. (2015) ACR Appropriateness Criteria indeterminate renal mass. J Am Coll Radiol 12(4):333–341

    Article  PubMed  Google Scholar 

  4. Thyavihally YB, Mahantshetty U, Chamarajanagar RS, Raibhattanavar SG, Tongaonkar HB (2005) Management of renal cell carcinoma with solitary metastasis. World J Surg Oncol 3:48

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hafez KS, Novick AC, Campbell SC (1997) Patterns of tumor recurrence and guidelines for followup after nephron sparing surgery for sporadic renal cell carcinoma. J Urol 157(6):2067–2070

    Article  CAS  PubMed  Google Scholar 

  6. Muglia VF, Prando A (2015) Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 48(3):166–174

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bianchi M, Sun M, Jeldres C, et al. (2012) Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann Oncol 23(4):973–980

    Article  CAS  PubMed  Google Scholar 

  8. Li P, Wong YN, Armstrong K, et al. (2016) Survival among patients with advanced renal cell carcinoma in the pretargeted versus targeted therapy eras. Cancer Med 5(2):169–181

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coppin C, Porzsolt F, Awa A, et al. (2005) Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev 1:CD001425

    PubMed  Google Scholar 

  10. Eisenhauer EA, Therasse P, Bogaerts J, et al. (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  11. Cuenod CA, Fournier L, Balvay D, Guinebretiere JM (2006) Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31(2):188–193

    Article  CAS  PubMed  Google Scholar 

  12. Escudier B, Eisen T, Stadler WM, et al. (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    Article  CAS  PubMed  Google Scholar 

  13. Escudier B, Pluzanska A, Koralewski P, et al. (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370(9605):2103–2111

    Article  PubMed  Google Scholar 

  14. Motzer RJ, Hutson TE, Tomczak P, et al. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124

    Article  CAS  PubMed  Google Scholar 

  15. Miller K, Wang M, Gralow J, et al. (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357(26):2666–2676

    Article  CAS  PubMed  Google Scholar 

  16. Hutson TE (2011) Targeted therapies for the treatment of metastatic renal cell carcinoma: clinical evidence. Oncologist 16(Suppl 2):14–22

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choueiri TK, Escudier B, Powles T, et al. (2015) Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 373(19):1814–1823

    Article  CAS  PubMed  Google Scholar 

  18. Lombardi G, Zustovich F, Donach M (2012) Dalla Palma M, Nicoletto O, Pastorelli D. An update on targeted therapy in metastatic renal cell carcinoma. Urol Oncol 30(3):240–246

    Article  PubMed  Google Scholar 

  19. Bex A, Fournier L, Lassau N, et al. (2014) Assessing the response to targeted therapies in renal cell carcinoma: technical insights and practical considerations. Eur Urol 65(4):766–777

    Article  PubMed  Google Scholar 

  20. Krajewski KM, Guo M, Van den Abbeele AD, et al. (2011) Comparison of four early posttherapy imaging changes (EPTIC; RECIST 1.0, tumor shrinkage, computed tomography tumor density, Choi criteria) in assessing outcome to vascular endothelial growth factor-targeted therapy in patients with advanced renal cell carcinoma. Eur Urol 59(5):856–862

    Article  PubMed  Google Scholar 

  21. Nishino M, Ramaiya NH, Choueiri TK (2015) RECIST 1.1 compared with RECIST 1.0 in patients with advanced renal cell carcinoma receiving vascular endothelial growth factor-targeted therapy. Am J Roentgenol 204(3):W282–W288

    Article  Google Scholar 

  22. Kim JH (2016) Comparison of the RECIST 1.0 and RECIST 1.1 in patients treated with targeted agents: a pooled analysis and review. Oncotarget 7:13680–13687

    PubMed  Google Scholar 

  23. Nathan PD, Vinayan A, Stott D, Juttla J, Goh V (2010) CT response assessment combining reduction in both size and arterial phase density correlates with time to progression in metastatic renal cancer patients treated with targeted therapies. Cancer Biol Ther 9(1):15–19

    Article  PubMed  Google Scholar 

  24. van der Veldt AA, Meijerink MR, van den Eertwegh AJ, Boven E (2010) Targeted therapies in renal cell cancer: recent developments in imaging. Target Oncol 5(2):95–112

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smith AD, Lieber ML, Shah SN (2010) Assessing tumor response and detecting recurrence in metastatic renal cell carcinoma on targeted therapy: importance of size and attenuation on contrast-enhanced CT. Am J Roentgenol 194(1):157–165

    Article  Google Scholar 

  26. Sullivan DC, Obuchowski NA, Kessler LG, et al. (2015) Metrology Standards for Quantitative Imaging Biomarkers. Radiology 277(3):813–825

    Article  PubMed  Google Scholar 

  27. Raunig DL, McShane LM, Pennello G, et al. (2015) Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res 24(1):27–67

    Article  PubMed  Google Scholar 

  28. Abramson RG, Burton KR, Yu JP, et al. (2015) Methods and challenges in quantitative imaging biomarker development. Acad Radiol 22(1):25–32

    Article  PubMed  PubMed Central  Google Scholar 

  29. van der Mijn JC, Mier JW, Broxterman HJ, Verheul HM (2014) Predictive biomarkers in renal cell cancer: insights in drug resistance mechanisms. Drug Resist Updat 17(4–6):77–88

    Article  PubMed  Google Scholar 

  30. Figueiras RG, Padhani AR, Goh VJ, et al. (2011) Novel oncologic drugs: what they do and how they affect images. Radiographics 31(7):2059–2091

    Article  PubMed  Google Scholar 

  31. Eichelberg C, Junker K, Ljungberg B, Moch H (2009) Diagnostic and prognostic molecular markers for renal cell carcinoma: a critical appraisal of the current state of research and clinical applicability. Eur Urol 55(4):851–863

    Article  CAS  PubMed  Google Scholar 

  32. Casalino DD, Remer EM, Bishoff JT, et al. (2014) ACR appropriateness criteria post-treatment follow-up of renal cell carcinoma. J Am Coll Radiol 11(5):443–449

    Article  PubMed  Google Scholar 

  33. Therasse P, Arbuck SG, Eisenhauer EA, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  PubMed  Google Scholar 

  34. Miles KA (1999) Tumour angiogenesis and its relation to contrast enhancement on computed tomography: a review. Eur J Radiol 30(3):198–205

    Article  CAS  PubMed  Google Scholar 

  35. Smith AD, Shah SN, Rini BI, Lieber ML, Remer EM (2010) Morphology, Attenuation, Size, and Structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. Am J Roentgenol 194(6):1470–1478

    Article  Google Scholar 

  36. Smith AD, Zhang X, Souza F, et al., editors. Vascular tumor burden as a new quantitative CT imaging biomarker for predicting metastatic RCC response to antiangiogenic therapy. ASCO Annual Meeting Proceedings; 2016.

  37. Krajewski KM, Franchetti Y, Nishino M, et al. (2014) 10% Tumor diameter shrinkage on the first follow-up computed tomography predicts clinical outcome in patients with advanced renal cell carcinoma treated with angiogenesis inhibitors: a follow-up validation study. Oncologist 19(5):507–514

    Article  PubMed  PubMed Central  Google Scholar 

  38. Choi H, Charnsangavej C, Faria SC, et al. (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25(13):1753–1759

    Article  PubMed  Google Scholar 

  39. Smith AD, Souza F, Roda M, Zhang H, Zhang X. MASS Criteria predicts survival in sunitinib treated metastatic RCC—a secondary analysis of a multi-institutional prospective phase III trial. Society of Abdominal Radiology Annual Meeting; 2015.

  40. Smith AD, Zhang X, Bryan J, et al. Vascular tumor burden as a new quantitative computed tomography imaging biomarker for predicting metastatic renal cell carcinoma response to anti-angiogenic therapy. Radiology (Under review); 2016.

  41. Schmidt N, Hess V, Zumbrunn T, et al. (2013) Choi response criteria for prediction of survival in patients with metastatic renal cell carcinoma treated with anti-angiogenic therapies. Eur Radiol 23(3):632–639

    PubMed  Google Scholar 

  42. van der Veldt AA, Meijerink MR, van den Eertwegh AJ, Haanen JB, Boven E (2010) Choi response criteria for early prediction of clinical outcome in patients with metastatic renal cell cancer treated with sunitinib. Br J Cancer 102(5):803–809

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lamuraglia M, Raslan S, Elaidi R, et al. (2016) mTOR-inhibitor treatment of metastatic renal cell carcinoma: contribution of Choi and modified Choi criteria assessed in 2D or 3D to evaluate tumor response. Eur Radiol 26(1):278–285

    Article  CAS  PubMed  Google Scholar 

  44. Krajewski KM, Nishino M, Franchetti Y, et al. (2014) Intraobserver and interobserver variability in computed tomography size and attenuation measurements in patients with renal cell carcinoma receiving antiangiogenic therapy: implications for alternative response criteria. Cancer 120(5):711–721

    Article  PubMed  PubMed Central  Google Scholar 

  45. Thian Y, Gutzeit A, Koh DM, et al. (2014) Revised Choi imaging criteria correlate with clinical outcomes in patients with metastatic renal cell carcinoma treated with sunitinib. Radiology 273(2):452–461

    Article  PubMed  Google Scholar 

  46. Smith AD, Shah SN, Rini BI, Lieber ML, Remer EM (2013) Utilizing pre-therapy clinical schema and initial CT changes to predict progression-free survival in patients with metastatic renal cell carcinoma on VEGF-targeted therapy: a preliminary analysis. Urol Oncol 31(7):1283–1291

    Article  PubMed  Google Scholar 

  47. Miles KA, Ganeshan B, Hayball MP (2013) CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging 13(3):400–406

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goh V, Ganeshan B, Nathan P, et al. (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1):165–171

    Article  PubMed  Google Scholar 

  49. Lamuraglia M, Escudier B, Chami L, et al. (2006) To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur J Cancer 42(15):2472–2479

    Article  CAS  PubMed  Google Scholar 

  50. Lassau N, Koscielny S, Albiges L, et al. (2010) Metastatic renal cell carcinoma treated with sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography. Clin Cancer Res 16(4):1216–1225

    Article  CAS  PubMed  Google Scholar 

  51. Lassau N, Chapotot L, Benatsou B, et al. (2012) Standardization of dynamic contrast-enhanced ultrasound for the evaluation of antiangiogenic therapies: the French multicenter Support for Innovative and Expensive Techniques Study. Invest Radiol 47(12):711–716

    Article  CAS  PubMed  Google Scholar 

  52. Fournier LS, Oudard S, Thiam R, et al. (2010) Metastatic renal carcinoma: evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology 256(2):511–518

    Article  PubMed  Google Scholar 

  53. Hahn OM, Yang C, Medved M, et al. (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26(28):4572–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang HY, Ding HJ, Chen JH, et al. (2012) Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging 12:464–474

    Article  PubMed  PubMed Central  Google Scholar 

  55. Caldarella C, Muoio B, Isgro MA, et al. (2014) The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to tyrosine-kinase inhibitors in patients with metastatic primary renal cell carcinoma. Radiol Oncol 48(3):219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Farnebo J, Gryback P, Harmenberg U, et al. (2014) Volumetric FDG-PET predicts overall and progression- free survival after 14 days of targeted therapy in metastatic renal cell carcinoma. BMC Cancer 14:408

    Article  PubMed  PubMed Central  Google Scholar 

  57. Horn KP, Yap JT, Agarwal N, et al. (2015) FDG and FLT-PET for Early measurement of response to 37.5 mg daily sunitinib therapy in metastatic renal cell carcinoma. Cancer Imaging 15:15

    Article  PubMed  PubMed Central  Google Scholar 

  58. Oosting SF, Brouwers AH, van Es SC, et al. (2015) 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J Nucl Med 56(1):63–69

    Article  CAS  PubMed  Google Scholar 

  59. Maleddu A, Pantaleo MA, Castellucci P, et al. (2009) 11C-acetate PET for early prediction of sunitinib response in metastatic renal cell carcinoma. Tumori 95(3):382–384

    CAS  PubMed  Google Scholar 

  60. Turkbey B, Lindenberg ML, Adler S, et al. (2016) PET/CT imaging of renal cell carcinoma with (18)F-VM4-037: a phase II pilot study. Abdom Radiol 41(1):109–118

    Article  Google Scholar 

  61. Middendorp M, Maute L, Sauter B, Vogl TJ, Grunwald F (2010) Initial experience with 18F-fluoroethylcholine PET/CT in staging and monitoring therapy response of advanced renal cell carcinoma. Ann Nucl Med 24(6):441–446

    Article  CAS  PubMed  Google Scholar 

  62. Namura K, Minamimoto R, Yao M, et al. (2010) Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer 10:667

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu G, Jeraj R, Vanderhoek M, et al. (2011) Pharmacodynamic study using FLT PET/CT in patients with renal cell cancer and other solid malignancies treated with sunitinib malate. Clin Cancer Res 17(24):7634–7644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Smith.

Ethics declarations

Conflicts of Interest

Andrew D. Smith has received an investigator-initiated grant from Pfizer. Andrew D. Smith is the president of Radiostics LLC, a core imaging lab focused on image interpretation for industry-sponsored clinical trials. Andrew D. Smith is the president of eMASS LLC and has a patent pending related to the vascular tumor burden technology described in this manuscript. Andrew D. Smith is the president of Liver Nodularity LLC and has a patent pending. Andrew D. Smith is the president of Color Enhanced Detection LLC and has a patent pending. All other authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived for the retrospective studies described in the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirous, R., Henegan, J.C., Zhang, X. et al. Metastatic renal cell carcinoma imaging evaluation in the era of anti-angiogenic therapies. Abdom Radiol 41, 1086–1099 (2016). https://doi.org/10.1007/s00261-016-0742-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0742-7

Keywords

Navigation