Skip to main content
Log in

Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

Determine intra- and inter-examination repeatability of magnitude-based magnetic resonance imaging (MRI-M), complex-based magnetic resonance imaging (MRI-C), and magnetic resonance spectroscopy (MRS) at 3T for estimating hepatic proton density fat fraction (PDFF), and using MRS as a reference, confirm MRI-M and MRI-C accuracy.

Methods

Twenty-nine overweight and obese pediatric (n = 20) and adult (n = 9) subjects (23 male, 6 female) underwent three same-day 3T MR examinations. In each examination MRI-M, MRI-C, and single-voxel MRS were acquired three times. For each MRI acquisition, hepatic PDFF was estimated at the MRS voxel location. Intra- and inter-examination repeatability were assessed by computing standard deviations (SDs) and intra-class correlation coefficients (ICCs). Aggregate SD was computed for each method as the square root of the average of first repeat variances. MRI-M and MRI-C PDFF estimation accuracy was assessed using linear regression with MRS as a reference.

Results

For MRI-M, MRI-C, and MRS acquisitions, respectively, mean intra-examination SDs were 0.25%, 0.42%, and 0.49%; mean intra-examination ICCs were 0.999, 0.997, and 0.995; mean inter-examination SDs were 0.42%, 0.45%, and 0.46%; and inter-examination ICCs were 0.995, 0.992, and 0.990. Aggregate SD for each method was <0.9%. Using MRS as a reference, regression slope, intercept, average bias, and R 2, respectively, for MRI-M were 0.99%, 1.73%, 1.61%, and 0.986, and for MRI-C were 0.96%, 0.43%, 0.40%, and 0.991.

Conclusion

MRI-M, MRI-C, and MRS showed high intra- and inter-examination hepatic PDFF estimation repeatability in overweight and obese subjects. Longitudinal hepatic PDFF change >1.8% (twice the maximum aggregate SD) may represent real change rather than measurement imprecision. Further research is needed to assess whether examinations performed on different days or with different MR technologists affect repeatability of MRS voxel placement and MRS-based PDFF measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749. doi:10.1002/jmri.22775

    Article  PubMed  Google Scholar 

  2. Reeder SB, Sirlin CB (2010) Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am 18:337–357, ix. doi:10.1016/j.mric.2010.08.013

    Article  PubMed Central  PubMed  Google Scholar 

  3. Permutt Z, Le TA, Peterson MR, et al. (2012) Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 36:22–29. doi:10.1111/j.1365-2036.2012.05121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Le TA, Chen J, Changchein C, et al. (2012) Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 56:922–932. doi:10.1002/hep.25731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Thomsen C, Becker U, Winkler K, et al. (1994) Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Imaging 12:487–495

    Article  CAS  PubMed  Google Scholar 

  6. Johnson NA, Walton DW, Sachinwalla T, et al. (2008) Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology 47:1513–1523. doi:10.1002/hep.22220

    Article  CAS  PubMed  Google Scholar 

  7. Meisamy S, Hines CD, Hamilton G, et al. (2011) Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258:767–775. doi:10.1148/radiol.10100708

    Article  PubMed Central  PubMed  Google Scholar 

  8. Yokoo T, Bydder M, Hamilton G, et al. (2009) Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 251:67–76. doi:10.1148/radiol.2511080666

    Article  PubMed Central  PubMed  Google Scholar 

  9. Yokoo T, Shiehmorteza M, Hamilton G, et al. (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258:749–759. doi:10.1148/radiol.10100659

    Article  PubMed Central  PubMed  Google Scholar 

  10. Yu H, McKenzie CA, Shimakawa A, et al. (2007) Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 26:1153–1161. doi:10.1002/jmri.21090

    Article  PubMed  Google Scholar 

  11. Yu H, Shimakawa A, McKenzie CA, et al. (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60:1122–1134. doi:10.1002/mrm.21737

    Article  PubMed Central  PubMed  Google Scholar 

  12. Artz NS, Haufe WM, Hooker CA, et al. (2015) Reproducibility of MR-based liver fat quantification across field strength: same-day comparison between 1.5T and 3T in obese subjects. J Magn Reson Imaging 42:811–817. doi:10.1002/jmri.24842

    Article  PubMed  Google Scholar 

  13. Guaraldi G, Besutti G, Stentarelli C, et al. (2012) Magnetic resonance for quantitative assessment of liver steatosis: a new potential tool to monitor antiretroviral-drug-related toxicities. Antivir Ther 17:965–971. doi:10.3851/IMP2228

    Article  CAS  PubMed  Google Scholar 

  14. Johnson BL, Schroeder ME, Wolfson T, et al. (2014) Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging 39:440–447. doi:10.1002/jmri.24153

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kang GH, Cruite I, Shiehmorteza M, et al. (2011) Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 34:928–934. doi:10.1002/jmri.22701

    Article  PubMed  Google Scholar 

  16. Kuhn JP, Hernando D, Mensel B, et al. (2014) Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging 39:1494–1501. doi:10.1002/jmri.24289

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ligabue G, Besutti G, Scaglioni R, Stentarelli C, Guaraldi G (2013) MR quantitative biomarkers of non-alcoholic fatty liver disease: technical evolutions and future trends. Quant Imaging Med Surg 3:192–195. doi:10.3978/j.issn.2223-4292.2013.08.01

    PubMed Central  PubMed  Google Scholar 

  18. Mashhood A, Railkar R, Yokoo T, et al. (2013) Reproducibility of hepatic fat fraction measurement by magnetic resonance imaging. J Magn Reson Imaging 37:1359–1370. doi:10.1002/jmri.23928

    Article  PubMed  Google Scholar 

  19. Reeder SB, Robson PM, Yu H, et al. (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29:1332–1339. doi:10.1002/jmri.21751

    Article  PubMed Central  PubMed  Google Scholar 

  20. Tang A, Tan J, Sun M, et al. (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431. doi:10.1148/radiol.12120896

    Article  PubMed Central  PubMed  Google Scholar 

  21. Negrete LM, Middleton MS, Clark L, et al. (2014) Inter-examination precision of magnitude-based MRI for estimation of segmental hepatic proton density fat fraction in obese subjects. J Magn Reson Imaging 39:1265–1271. doi:10.1002/jmri.24284

    Article  PubMed Central  PubMed  Google Scholar 

  22. US Department of Health and Human Services (2015) Analytical Procedures and Methods Validation for Drugs and Biologics: Guidance for Industry. Food and Drug Administration CDER & CBER. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm386366.pdf. Accessed 23 Dec 2014

  23. Hines CD, Frydrychowicz A, Hamilton G, et al. (2011) T(1) independent, T(2) (*) corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis. J Magn Reson Imaging 33:873–881. doi:10.1002/jmri.22514

    Article  PubMed Central  PubMed  Google Scholar 

  24. Liu CY, McKenzie CA, Yu H, Reeder SB (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 58:354–364. doi:10.1002/mrm.21301

    Article  PubMed  Google Scholar 

  25. Hernando D, Hines CD, Yu H, Reeder SB (2012) Addressing phase errors in fat-water imaging using a mixed magnitude/complex fitting method. Magn Reson Med 67:638–644. doi:10.1002/mrm.23044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Noureddin M, Lam J, Peterson MR, et al. (2013) Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 58:1930–1940. doi:10.1002/hep.26455

    Article  CAS  PubMed  Google Scholar 

  27. Hamilton G, Middleton MS, Bydder M, et al. (2009) Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification. J Magn Reson Imaging 30:145–152. doi:10.1002/nbm.1622

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hamilton G, Yokoo T, Bydder M, et al. (2011) In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed 24:784–790. doi:10.1002/jmri.21809

    Article  PubMed  Google Scholar 

  29. Naressi A, Couturier C, Devos JM, et al. (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286

    Article  CAS  PubMed  Google Scholar 

  30. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Contract grant sponsor: National Institutes of Health; Contract grant numbers: NIDDK R01 DK075128, NIDDK R01 DK088925, NCMHD EXPORT P60 MD00220, NIH T32 EB005970, UL1TR000100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishkar Tyagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, A., Yeganeh, O., Levin, Y. et al. Intra- and inter-examination repeatability of magnetic resonance spectroscopy, magnitude-based MRI, and complex-based MRI for estimation of hepatic proton density fat fraction in overweight and obese children and adults. Abdom Imaging 40, 3070–3077 (2015). https://doi.org/10.1007/s00261-015-0542-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0542-5

Keywords

Navigation