Skip to main content
Log in

Accurate estimate of pancreatic T2* values: how to deal with fat infiltration

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

We examined different approaches aimed to deal with the signal fluctuation of pancreatic T2* values due to fat infiltration in order to obtain accurate estimates of iron overload.

Methods

Pancreatic T2* values were assessed in 20 patients (13 females, 37.24 ± 9.12 years) enrolled in the Myocardial Iron Overload in Thalassemia network without and with the application of fat suppression-FS (T2*-NoFS and T2*-FS). T2* values were assessed in three different ways: (1) from the immediate fit (original T2*); (2) discarding the echoes until the achievement of a good visual concordance between the signal and the model (final_vis T2*); (3) eliminating the echoes until the achievement of a fitting error (known) <5% (final_thres T2*).

Results

For the T2*-NoFS sequence the original T2* values were significantly higher than the final_vis T2* values (difference:4.8 ± 6.1 ms; P < 0.0001) and the final_thres T2* values (difference:4.3 ± 6.1 ms; P = 0.006). For the T2*-FS sequence the original T2* values were comparable to final_vis and final_thres T2* values. The original T2*-FS values were significantly different from the original T2*-NoFS values. The final_vis T2*-FS values were comparable to the final_vis T2*-NoFS values and the final_thresh T2*-FS values were comparable to the final_thresh T2*-NoFS values. For both T2*-FS and T2*-NoFS sequences, the final_thres T2* values were not significantly different from the final_vis T2* values and no bias was present.

Conclusions

In the clinical practice, an accurate pancreatic iron overload assessment should be done by applying FS and, when needed, by discarding the TEs until the fitting error goes below 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andrews PA (2000) Disorders of iron metabolism. N Engl J Med 342:1293; author reply 1294

  2. Ozment CP, Turi JL (2009) Iron overload following red blood cell transfusion and its impact on disease severity. Biochim Biophys Acta 1790:694–701

    Article  CAS  PubMed  Google Scholar 

  3. Papakonstantinou O, Alexopoulou E, Economopoulos N, et al. (2009) Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with beta-thalassemia major. J Magn Reson Imaging 29:853–859

    Article  PubMed  Google Scholar 

  4. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  CAS  PubMed  Google Scholar 

  5. Anderson LJ, Holden S, Davis B, et al. (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179

    Article  CAS  PubMed  Google Scholar 

  6. Pepe A, Positano V, Santarelli F, et al. (2006) Multislice multiecho T2* cardiovascular magnetic resonance for detection of the heterogeneous distribution of myocardial iron overload. J Magn Reson Imaging 23:662–668

    Article  PubMed  Google Scholar 

  7. Wood JC, Enriquez C, Ghugre N, et al. (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 106:1460–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Noetzli LJ, Papudesi J, Coates TD, Wood JC (2009) Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood 114:4021–4026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Noetzli LJ, Coates TD, Wood JC (2011) Pancreatic iron loading in chronically transfused sickle cell disease is lower than in thalassaemia major. Br J Haematol 152:229–233

    Article  CAS  PubMed  Google Scholar 

  10. Sirlin CB, Reeder SB (2010) Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am 18:359–381, ix

  11. Papakonstantinou O, Foufa K, Benekos O, et al. (2012) Use of fat suppression in R(2) relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. Magn Reson Imaging 30:926–933

    Article  CAS  PubMed  Google Scholar 

  12. Szczepaniak LS, Babcock EE, Schick F, et al. (1999) Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol 276:E977–E989

    CAS  PubMed  Google Scholar 

  13. Wehrli FW, Ma J, Hopkins JA, Song HK (1998) Measurement of R’2 in the presence of multiple spectral components using reference spectrum deconvolution. J Magn Reson 131:61–68

    Article  CAS  PubMed  Google Scholar 

  14. Schwenzer NF, Machann J, Haap MM, et al. (2008) T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 43:854–860

    Article  PubMed  Google Scholar 

  15. Feng Y, He T, Gatehouse PD, et al. (2013) Improved MRI R(2) * relaxometry of iron-loaded liver with noise correction. Magn Reson Med 70:1765–1774

    Article  PubMed  Google Scholar 

  16. Positano V, Meloni A, Santarelli MF, et al. (2015) Fast generation of T2* maps in the entire range of clinical interest: application to thalassemia major patients. Comput Biol Med 56:200–210

    Article  PubMed  Google Scholar 

  17. Meloni A, Ramazzotti A, Positano V, et al. (2009) Evaluation of a web-based network for reproducible T2* MRI assessment of iron overload in thalassemia. Int J Med Inform 78:503–512

    Article  CAS  PubMed  Google Scholar 

  18. Restaino G, Meloni A, Positano V, et al. (2011) Regional and global pancreatic T*(2) MRI for iron overload assessment in a large cohort of healthy subjects: normal values and correlation with age and gender. Magn Reson Med 65:764–769

    Article  PubMed  Google Scholar 

  19. Frahm J, Haase A, Hanicke W, et al. (1985) Chemical shift selective MR imaging using a whole-body magnet. Radiology 156:441–444

    Article  CAS  PubMed  Google Scholar 

  20. Positano V, Pepe A, Santarelli MF, et al. (2007) Standardized T2* map of normal human heart in vivo to correct T2* segmental artefacts. NMR Biomed 20:578–590

    Article  PubMed  Google Scholar 

  21. de Assis RA, Ribeiro AA, Kay FU, et al. (2012) Pancreatic iron stores assessed by magnetic resonance imaging (MRI) in beta thalassemic patients. Eur J Radiol 81:1465–1470

    Article  PubMed  Google Scholar 

  22. Pepe A, Meloni A, Rossi G, et al. (2013) Cardiac complications and diabetes in thalassaemia major: a large historical multicentre study. Br J Haematol 163:520–527

    Article  CAS  PubMed  Google Scholar 

  23. O’Regan DP, Callaghan MF, Fitzpatrick J, et al. (2008) Cardiac T2* and lipid measurement at 3.0 T-initial experience. Eur Radiol 18:800–805

    Article  PubMed  Google Scholar 

  24. Ramalho M, Heredia V, de Campos RO, et al. (2012) In-phase and out-of-phase gradient-echo imaging in abdominal studies: intra-individual comparison of three different techniques. Acta Radiol 53:441–449

    Article  PubMed  Google Scholar 

  25. Anzai Y, Lufkin RB, Jabour BA, Hanafee WN (1992) Fat-suppression failure artifacts simulating pathology on frequency-selective fat-suppression MR images of the head and neck. AJNR Am J Neuroradiol 13:879–884

    CAS  PubMed  Google Scholar 

  26. Positano V, Salani B, Pepe A, et al. (2009) Improved T2* assessment in liver iron overload by magnetic resonance imaging. Magn Reson Imaging 27:188–197

    Article  PubMed  Google Scholar 

  27. Tanabe K, Nishikawa K, Sano T, Sakai O, Jara H (2010) Fat suppression with short inversion time inversion-recovery and chemical-shift selective saturation: a dual STIR-CHESS combination prepulse for turbo spin echo pulse sequences. J Magn Reson Imaging 31:1277–1281

    Article  PubMed  Google Scholar 

  28. Reeder SB, Pineda AR, Wen Z, et al. (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54:636–644

    Article  PubMed  Google Scholar 

  29. Yu H, Shimakawa A, McKenzie CA, et al. (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60:1122–1134

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the MIOT hematologists A. Spasiano (Napoli), B. Piraino (Messina), C. Fidone (Ragusa), M.E. Lai (Cagliari), A. Quarta (Brindisi), M. Benni (Bologna), L. Cuccia (Palermo), and C. Paci (Siena). We thank Claudia Santarlasci for skillful secretarial work and all patients for their cooperation. The MIOT project receives “no-profit support” from industrial sponsorships (Chiesi Farmaceutici S.p.A. and ApoPharma Inc.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Meloni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloni, A., De Marchi, D., Positano, V. et al. Accurate estimate of pancreatic T2* values: how to deal with fat infiltration. Abdom Imaging 40, 3129–3136 (2015). https://doi.org/10.1007/s00261-015-0522-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0522-9

Keywords

Navigation