Skip to main content
Log in

Radiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas–Renal Cell Carcinoma (TCGA–RCC) Imaging Research Group

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

To investigate associations between imaging features and mutational status of clear cell renal cell carcinoma (ccRCC).

Materials and methods

This multi-institutional, multi-reader study included 103 patients (77 men; median age 59 years, range 34–79) with ccRCC examined with CT in 81 patients, MRI in 19, and both CT and MRI in three; images were downloaded from The Cancer Imaging Archive, an NCI-funded project for genome-mapping and analyses. Imaging features [size (mm), margin (well-defined or ill-defined), composition (solid or cystic), necrosis (for solid tumors: 0%, 1%–33%, 34%–66% or >66%), growth pattern (endophytic, <50% exophytic, or ≥50% exophytic), and calcification (present, absent, or indeterminate)] were reviewed independently by three readers blinded to mutational data. The association of imaging features with mutational status (VHL, BAP1, PBRM1, SETD2, KDM5C, and MUC4) was assessed.

Results

Median tumor size was 49 mm (range 14–162 mm), 73 (71%) tumors had well-defined margins, 98 (95%) tumors were solid, 95 (92%) showed presence of necrosis, 46 (45%) had ≥50% exophytic component, and 18 (19.8%) had calcification. VHL (n = 52) and PBRM1 (n = 24) were the most common mutations. BAP1 mutation was associated with ill-defined margin and presence of calcification (p = 0.02 and 0.002, respectively, Pearson’s χ 2 test); MUC4 mutation was associated with an exophytic growth pattern (p = 0.002, Mann–Whitney U test).

Conclusions

BAP1 mutation was associated with ill-defined tumor margins and presence of calcification; MUC4 mutation was associated with exophytic growth. Given the known prognostic implications of BAP1 and MUC4 mutations, these results support using radiogenomics to aid in prognostication and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1):5–29

    Article  PubMed  Google Scholar 

  2. Lam JS, Shvarts O, Leppert JT, Figlin RA, Belldegrun AS (2005) Renal cell carcinoma 2005: new frontiers in staging, prognostication and targeted molecular therapy. J Urol 173(6):1853–1862

    Article  PubMed  Google Scholar 

  3. Gerlinger M, Rowan AJ, Horswell S, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49

    Article  Google Scholar 

  5. Peña-Llopis S, Vega-Rubín-de-Celis S, Liao A, et al. (2012) BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 44(7):751–759

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dalgliesh GL, Furge K, Greenman C, et al. (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Varela I, Tarpey P, Raine K, et al. (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Guo G, Gui Y, Gao S, et al. (2012) Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 44(1):17–19

    Article  CAS  Google Scholar 

  9. Duns G, van den Berg E, van Duivenbode I, et al. (2010) Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70(11):4287–4291

    Article  CAS  PubMed  Google Scholar 

  10. Shinagare AB, Giardino AA, Jagannathan JP, Van den Abbeele AD, Ramaiya NH (2011) Hereditary cancer syndromes: a radiologist’s perspective. Am J Roentgenol 197(6):W1001–W1007

    Article  Google Scholar 

  11. Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22(24):4991–5004

    Article  CAS  PubMed  Google Scholar 

  12. Shuin T, Kondo K, Torigoe S, et al. (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 54(11):2852–2855

    CAS  PubMed  Google Scholar 

  13. Kapur P, Peña-Llopis S, Christie A, et al. (2013) Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 14(2):159–167

    Article  CAS  PubMed  Google Scholar 

  14. Hakimi AA, Chen Y-B, Wren J, et al. (2013) Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 63(5):848–854

    Article  PubMed Central  PubMed  Google Scholar 

  15. cBioPortal for Cancer Genomics: Results [Internet]. http://www.cbioportal.org/public-portal/index.do?cancer_study_id=kirc_tcga_pub&genetic_profile_ids_PROFILE_MUTATION_EXTENDED=kirc_tcga_pub_mutations&genetic_profile_ids_PROFILE_COPY_NUMBER_ALTERATION=kirc_tcga_pub_gistic&Z_SCORE_THRESHOLD=2.0&RPPA_SCORE_THRESHOLD=2.0&data_priority=0&case_set_id=kirc_tcga_pub_cnaseq&case_ids=&gene_set_choice=user-defined-list&gene_list=MUC4&clinical_param_selection=null&tab_index=tab_visualize&Action=Submit. Accessed 22 Jul 2014

  16. Brugarolas J (2014) Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol 32(18):1968–1976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kuo MD, Jamshidi N (2014) Behind the numbers: decoding molecular phenotypes with radiogenomics—guiding principles and technical considerations. Radiology 270(2):320–325

    Article  PubMed  Google Scholar 

  18. Karlo CA, Di Paolo PL, Chaim J, et al. (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270(2):464–471

    Article  PubMed Central  PubMed  Google Scholar 

  19. CIP TCGA Radiology Initiative—The Cancer Imaging Archive (TCIA) Public Access—Cancer Imaging Archive Wiki [Internet]. https://wiki.cancerimagingarchive.net/display/Public/CIP+TCGA+Radiology+Initiative;jsessionid=92ACC1CC632A2219F9A6F965E2325B68. Accessed 23 Sep 2014

  20. Software Tools: Department of Radiology: Feinberg School of Medicine: Northwestern University [Internet]. http://www.radiology.northwestern.edu/research/areas-of-research/Imaging-Informatics-home/Software%20Tools.html. Accessed 18 Sep 2014

  21. Mongkolwat P, Kleper V, Talbot S, Rubin D (2014) The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation Model. J Digit Imaging. 27:692–701

    Article  PubMed  Google Scholar 

  22. Mongkolwat P, Channin DS, Kleper V, Rubin DL (2012) Informatics in radiology: an open-source and open-access cancer biomedical informatics grid annotation and image markup template builder. Radiographics 32(4):1223–1232

    Article  PubMed Central  PubMed  Google Scholar 

  23. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30–46

    Article  Google Scholar 

  24. Swiger LA, Harvey WR, Everson DO, Gregory KE (1964) The variance of intraclass correlation involving groups with one observation. Biometrics 20:818–826

    Article  Google Scholar 

  25. Krippendorff K (1970) Estimating the reliability, systematic error, and random error of interval data. Educ Psychol Meas 30:61–70

    Article  Google Scholar 

  26. Krippendorff K (2004) Content analysis: an introduction to its methodology, 2nd edn. Sage: Thousand Oaks

    Google Scholar 

  27. Efron B, Tibshirani RJ (1998) An Introduction to the Bootstrap. Boca Raton: Chapman and Hall/CRC

    Google Scholar 

  28. Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. London: Chapman and Hall

    Book  Google Scholar 

  29. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    Article  CAS  PubMed  Google Scholar 

  30. Bickel PJ, Freedman DA (1984) Asymptotic normality and the Bootstrap in stratified sampling. Ann Statist 12(2):470–482

    Article  Google Scholar 

  31. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300

    Google Scholar 

  32. R Project for Statistical Computing. R (Version 3.1.1, 2014). http://www.r-project.org/. Accessed 23 Sep 2014

  33. Fukatsu A, Tsuzuki T, Sassa N, et al. (2013) Growth pattern, an important pathologic prognostic parameter for clear cell renal cell carcinoma. Am J Clin Pathol 140(4):500–505

    Article  PubMed  Google Scholar 

  34. Ro JY, Ayala AG, Sella A, Samuels ML, Swanson DA (1987) Sarcomatoid renal cell carcinoma: clinicopathologic. A study of 42 cases. Cancer 59(3):516–526

    Article  CAS  PubMed  Google Scholar 

  35. Venkatesh R, Weld K, Ames CD, et al. (2006) Laparoscopic partial nephrectomy for renal masses: effect of tumor location. Urology 67(6):1169–1174 (discussion 1174)

    Article  PubMed  Google Scholar 

  36. Kutikov A, Uzzo RG (2009) The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol 182(3):844–853

    Article  PubMed  Google Scholar 

  37. Sankin A, Hakimi AA, Mikkilineni N, et al. (2014) The impact of genetic heterogeneity on biomarker development in kidney cancer assessed by multiregional sampling. Cancer Med 3:1485–1492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Image data used in this research were obtained from The Cancer Imaging Archive (http://cancerimagingarchive.net/) sponsored by the Cancer Imaging Program, Division of Cancer Treatment and Diagnosis (DCTD)/National Cancer Institute (NCI)/National Institutes of Health (NIH). This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. We thank Alessandro Furlan, MD for participating as a study reader. We thank Ms. Brenda Fevrier-Sullivan from NCI for administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul B. Shinagare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinagare, A.B., Vikram, R., Jaffe, C. et al. Radiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas–Renal Cell Carcinoma (TCGA–RCC) Imaging Research Group. Abdom Imaging 40, 1684–1692 (2015). https://doi.org/10.1007/s00261-015-0386-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0386-z

Keywords

Navigation