Skip to main content

Advertisement

Log in

Gadoxetic acid: pearls and pitfalls

  • Pictorial Essay
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Gadoxetic acid is a hepatocyte-specific magnetic resonance imaging contrast agent with the ability to detect and characterize focal liver lesions and provide structural and functional information about the hepatobiliary system. Knowledge of the pharmacokinetics of gadoxetic acid is paramount to understanding imaging protocol and lesion appearance and facilitates identification and avoidance of undesired effects with use of this intravenous contrast agent. This article reviews the utility of gadoxetic acid in liver and biliary imaging, with emphasis on the hepatobiliary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lee NK, Kim S, Lee JW, Lee SH, et al. (2009) Biliary MR imaging with Gd-EOB-DTPA and its clinical applications. Radiographics 29:1707–1724

    Article  PubMed  Google Scholar 

  2. Seale MK, Catalano OA, Saini S, et al. (2009) Hepatobiliary-specific MR contrast agents: role in imaging the liver and biliary tree. Radiographics 29(6):1725–1748

    Article  PubMed  Google Scholar 

  3. Ringe KI, Husarik DB, Sirlin CB, et al. (2010) Gadoxetate disodium-enhanced MRI of the Liver: Part 1. Protocol optimization and lesion appearance in the noncirrhotic liver. AJR 195:13–28

    Article  PubMed  Google Scholar 

  4. Huppertz A, Haraida S, Kraus A, et al. (2005) Enhancement of focal liver lesions at gadoxetic acid-enhanced mr imaging: correlation with histopathologic findings and spiral CT-initial observations. Radiology 234(2):468–478

    Article  PubMed  Google Scholar 

  5. Cruite I, Schroeder M, Merkle EM, et al. (2010) Gadoxetate disodium-enhanced MRI of the liver: Part 2. Protocol optimization and lesion appearance in the cirrhotic liver. AJR 195:29–41

    Article  PubMed  Google Scholar 

  6. Goodwin MD, Dobson JE, Sirlin CB, et al. (2011) Diagnostic challenges and pitfalls in MR imaging with hepatocyte-specific contrast agents. Radiographics 31(6):1547–1568

    Article  PubMed  Google Scholar 

  7. Ringe KI, Husarik DB, Gupta RT, et al. (2011) Hepatobiliary transit times of gadoxetate disodium (Primovist) for protocol optimization of comprehensive MR imaging of the biliary system—what is normal? Eur J Radiol 79:201–205

    Article  PubMed  Google Scholar 

  8. Mühler A, Heinzelmann I, Weinmann H (1994) Elimination of gadolinium-ethoxybenzyl-DTPA in a rat model of severely impaired liver and kidney excretory function: an experimental study in rats. Invest Radiol 29:213–216

    Article  PubMed  Google Scholar 

  9. Gschwend S, Ebert W, Schultze-Mosgau M, et al. (2011) Pharmacokinetics and imaging properties of Gd-EOB-DTPA in patients with hepatic and renal impairment. Invest Radiol 46:556–566

    Article  CAS  PubMed  Google Scholar 

  10. Fidler J, Hough D (2011) Hepatocyte-specific magnetic resonance imaging contrast agents. Hepatology 53(2):678–682

    Article  PubMed  Google Scholar 

  11. Van Beers BE, Pastor CM, Hussain HK (2012) Primovist, Eovist: what to expect? J Hepatol 57:421–429

    Article  PubMed  Google Scholar 

  12. Zech CJ, Bartolozzi C, Bioulac-Sage P, et al. (2013) Consensus report of the fifth international forum for liver MRI. AJR 201:97–107

    Article  PubMed  Google Scholar 

  13. Karam AR, Shankar S, Surapaneni P, et al. (2010) Focal nodular hyperplasia: central scar enhancement pattern using gadoxetate disodium. J Magn Reson Imaging 32(2):341–344

    Article  PubMed  Google Scholar 

  14. American College of Radiology (2014) Liver imaging reporting and data system (LI-RADS). Washington, DC: American College of Radiology. http://www.acr.org/quality-safety.resources/lirads. Accessed 29 Dec 2014

  15. Zech CJ, Vos B, Nordell A, et al. (2009) Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses of Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 44:305–310

    Article  CAS  PubMed  Google Scholar 

  16. Nagle SK, Busse RF, Brau AC, et al. (2012) High resolution navigated three-dimensional T1-weighted hepatobiliary MRI using gadoxetic acid optimized for 1.5 Tesla. J Magn Reson Imaging 36(4):890–899

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kim S, Mussi TC, Lee LJ, et al. (2013) Effect of flip angle for optimization of image quality of gadoxetate disodium-enhanced biliary imaging at 1.5 T. AJR 200(1):90–96

    Article  PubMed  Google Scholar 

  18. Frydrychowicz A, Nagle SK, D’Souza SL, et al. (2011) Optimized high-resolution contrast-enhanced hepatobiliary imaging at 3 tesla: a cross-over comparison of gadobenate dimeglumine and gadoxetic acid. J Magn Reson Imaging 34:585–594

    Article  PubMed Central  PubMed  Google Scholar 

  19. Purysko AS, Remer EM, Coppa CP, et al. (2012) Characteristics and distinguishing features of hepatocellular adenoma and focal nodular hyperplasia on gadoxetate disodium-enhanced MRI. AJR 198:115–123

    Article  PubMed  Google Scholar 

  20. Motosugi U, Ichikawa T, Sou H, et al. (2010) Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging. Radiology 256(1):151–158

    Article  PubMed  Google Scholar 

  21. Grazioli L, Morana G, Federle MP, et al. (2001) Focal nodular hyperplasia: morphologic and functional information from MR Imaging with gadobenate dimeglumine. Radiology 221(3):731–739

    Article  CAS  PubMed  Google Scholar 

  22. Zech CJ, Grazioli L, Breuer J, et al. (2008) Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Invest Radiol 43(7):504–511

    Article  PubMed  Google Scholar 

  23. Gupta RT, Iseman CM, Leyendecker JR, et al. (2012) Diagnosis of focal nodular hyperplasia with MRI: multicenter retrospective study comparing gadobenate dimeglumine to gadoxetate disodium. AJR 199(1):35–43

    Article  PubMed  Google Scholar 

  24. Grazioli L, Bondioni MP, Haradome H, et al. (2012) Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 262:520–529

    Article  PubMed  Google Scholar 

  25. Choi JW, Lee JM, Kim SJ, et al. (2013) Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced mr images and their value as an imaging biomarker. Radiology 267:776–786

    Article  PubMed  Google Scholar 

  26. Kim YK, Kim CS, Han YM, et al. (2009) Detection of hepatocellular carcinoma: gadoxetic acid-enhanced 3-dimensional magnetic resonance imaging versus multi-detector row computed tomography. J Comput Assist Tomogr 33(6):844–850

    Article  PubMed  Google Scholar 

  27. Sano K, Ichikawa T, Motosugi U, et al. (2011) Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology 261(3):834–844

    Article  PubMed  Google Scholar 

  28. Park G, Kim YK, Kim CS, et al. (2010) Diagnostic efficacy of gadoxetic acid-enhanced MRI in the detection of hepatocellular carcinomas: comparison with gadopentetate dimeglumine. Br J Radiol 82:1010–1016

    Article  Google Scholar 

  29. Kim YK, Kim CS, Han YM, et al. (2010) Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma. Clin Radiol 65(5):358–365

    Article  CAS  PubMed  Google Scholar 

  30. Golfieri R, Renzulli M, Lucidi V, et al. (2011) Contribution of the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to dynamic MRI in the detection of hypovascular small (</=2 cm) HCC in cirrhosis. Eur Radiol 21:1233–1242

    Article  PubMed  Google Scholar 

  31. Kim YK, Lee WJ, Park MJ, et al. (2012) Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology 265(1):104–114

    Article  PubMed  Google Scholar 

  32. Huppertz A, Balzer T, Blakeborough A, et al. (2004) European EOB Study Group. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230(1):266–275

    Article  PubMed  Google Scholar 

  33. Hammerstingl R, Huppertz A, Breuer J, et al. (2008) Diagnostic efficacy of gadoxetic acid (Primovist)-enhanced MRI and spiral CT for a therapeutic strategy: comparison with intraoperative and histopathologic findings in focal liver lesions. Eur Radiol 18(3):457–467

    Article  PubMed  Google Scholar 

  34. Zech CJ, Herrmann KA, Reiser MF, et al. (2007) MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci 6(1):43–52

    Article  PubMed  Google Scholar 

  35. Niekel MC, Bipat S, Stoker J (2010) Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 257(3):674–684

    Article  PubMed  Google Scholar 

  36. Lafaro KJ, Roumanis P, Demirjian AN, et al. (2013) Gd-EOB-DTPA-enhanced MRI for detection of liver metastases from colorectal cancer: a surgeon’s perspective! Int J Hepatol. doi:10.1155/2013/572307

  37. Ding Y, Rao SX, Meng T, et al. (2014) Preoperative evaluation of colorectal liver metastases: comparison of gadopentetate dimeglumine and gadoxetic-acid-enhanced 15-T MRI. Clin Imaging 38(3):273–278

    Article  PubMed  Google Scholar 

  38. Frankel TL, D’Angelica MI (2014) Hepatic resection for colorectal metastases. J Surg Oncol 109(1):2–7

    Article  PubMed  Google Scholar 

  39. Zech CJ, Grazioli L, Jonas E, et al. (2009) Health-economic evaluation of three imaging strategies in patients with suspected colorectal liver metastases: Gd-EOB-DTPA-enhanced MRI vs. extracellular contrast media-enhanced MRI and 3-phase MDCT in Germany, Italy and Sweden. Eur Radiol 19(suppl 3):S753–S763

    Article  PubMed  Google Scholar 

  40. Macera A, Lario C, Petracchini M, et al. (2013) Staging of colorectal liver metastases after preoperative chemotherapy. Diffusion-weighted imaging in combination with Gd-EOB-DTPA MRI sequences increases sensitivity and diagnostic accuracy. Eur Radiol 23(3):739–747

    Article  PubMed  Google Scholar 

  41. Han NY, Park BJ, Sung DJ, et al. (2014) Chemotherapy-induced focal hepatopathy in patients with gastrointestinal malignancy: gadoxetic acid-enhanced and diffusion-weighted MR Imaging with clinical-pathologic correlation. Radiology 271(2):416–425

    Article  PubMed  Google Scholar 

  42. Schuppan D, Kim YO (2013) Evolving therapies for liver fibrosis. J Clin Invest 123(5):1887–1901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pinzani M, Rombouts K, Colagrande S (2005) Fibrosis in chronic liver diseases: diagnosis and management. J Hepatol 42(Suppl 1):S22–36

    Article  PubMed  Google Scholar 

  44. Feier D, Balassy C, Bastati N, et al. (2013) Liver fibrosis: histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging. Radiology 269(2):460–468

    Article  PubMed  Google Scholar 

  45. Watanabe H, Kanematsu M, Goshima S, et al. (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging-preliminary observations. Radiology 259(1):142–150

    Article  PubMed  Google Scholar 

  46. Tsuda N, Matsui O (2010) Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi—gadoxetic acid-enhanced MR imaging. Radiology 256:767–773

    Article  PubMed  Google Scholar 

  47. Haimerl M, Verloh N, Zeman F, et al. (2013) Assessment of clinical signs of liver cirrhosis using T1 mapping on Gd-EOB-DTPA-enhanced 3T MRI. PLoS ONE 8(12):e85658

    Article  PubMed Central  PubMed  Google Scholar 

  48. Wibmer A, Prusa AM, Nolz R, et al. (2013) Liver failure after major liver resection: risk assessment by using preoperative Gadoxetic acid-enhanced 3-T MR imaging. Radiology 269(3):777–786

    Article  PubMed  Google Scholar 

  49. Carlos RC, Branam JD, Dong Q, et al. (2002) Biliary imaging with Gd-EOB-DTPA: is a 20-minute delay sufficient? Acad Radiol 9(11):1322–1325

    Article  PubMed  Google Scholar 

  50. Hyodo T, Kumano S, Kushihata F, et al. (2012) CT and MR cholangiography: advantages and pitfalls in perioperative evaluation of biliary tree. Br J Radiol 85:887–896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Carlos RC, Hussain HK, Song JH, et al. (2002) Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid as an intrabiliary contrast agent: preliminary assessment. AJR 179(1):87–92

    Article  PubMed  Google Scholar 

  52. Ergen FB, Akata D, Sarikaya B, et al. (2008) Visualization of the biliary tract using gadobenate dimeglumine: preliminary findings. J Comput Assist Tomogr 32(1):54–60

    Article  PubMed  Google Scholar 

  53. Tschirch FT, Struwe A, Petrowsky H, et al. (2008) Contrast-enhanced MR cholangiography with Gd-EOB-DTPA in patients with liver cirrhosis: visualization of the biliary ducts in comparison with patients with normal liver parenchyma. Eur Radiol 18:1577–1586

    Article  PubMed  Google Scholar 

  54. Alegre Castellanos A, Molina Granados JF, Escribano Fernandez J, et al. (2012) Early phase detection of bile leak after hepatobiliary surgery: value of Gd-EOB-DTPA-enhanced MR cholangiography. Abdom Imaging 37(5):795–802

    Article  PubMed  Google Scholar 

  55. Kantarcı M, Pirimoglu B, Karabulut N, et al. (2013) Non-invasive detection of biliary leaks using Gd-EOB-DTPA-enhanced MR cholangiography: comparison with T2-weighted MR cholangiography. Eur Radiol 23(10):2713–2722

    Article  PubMed Central  PubMed  Google Scholar 

  56. Reiner CS, Merkle EM, Bashir MR, et al. (2013) MRI assessment of biliary ductal obstruction: is there added value of T1-weighted gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced MR cholangiography? AJR 201(1):W49–W56

    Article  PubMed  Google Scholar 

  57. Krishnan P, Gupta RT, Boll DT, et al. (2012) Functional evaluation of cystic duct patency with Gd-EOB-DTPA MR imaging: an alternative to hepatobiliary scintigraphy for diagnosis of acute cholecystitis? Abdom Imaging 37(3):457–464

    Article  PubMed  Google Scholar 

  58. Lee JK, Kim Y, Lee S, et al. (2015) Hepatobiliary phase of gadoxetic acid-enhanced MR in patients suspected of having gallbladder dyskinesia: comparison with hepatobiliary scintigraphy. Clin Imaging 39(1):66–71

    Article  PubMed  Google Scholar 

  59. Kantarci M, Pirimoglu B, Ogul H, et al. (2014) Can biliary-cyst communication be predicted by Gd-EOB-DTPA-enhanced MR cholangiography before treatment for hepatic hydatid disease? Clin Radiol 69(1):52–58

    Article  CAS  PubMed  Google Scholar 

  60. Ishimaru H, Nakashima K, Sakugawa T, et al. (2014) Local recurrence after chemoembolization of hepatocellular carcinoma: uptake of gadoxetic acid as a new prognostic factor. AJR 202(4):744–751

    Article  PubMed  Google Scholar 

  61. Suh YJ, Kim MJ, Choi JY, et al. (2011) Differentiation of hepatic hyperintense lesions seen on gadoxetic acid-enhanced hepatobiliary phase MRI. AJR 197(1):W44–W52

    Article  PubMed  Google Scholar 

  62. Song WS, Schwope RB, Taylor KA, et al. (2012) Unexpected uptake of gadoxetic acid in a hepatic metastasis from T-cell lymphoma. Cancer Imaging 12:122–125

    Article  PubMed Central  PubMed  Google Scholar 

  63. Motosugi U, Ichikawa T, Onohara K, et al. (2011) Distinguishing hepatic metastasis from hemangioma using gadoxetic acid-enhanced magnetic resonance imaging. Invest Radiol 46(6):359–365

    Article  PubMed  Google Scholar 

  64. Jeong HT, Kim MJ, Chung YE, et al. (2013) Gadoxetate disodium-enhanced MRI of mass-forming intrahepatic cholangiocarcinomas: imaging-histologic correlation. AJR 201(4):W603–W611

    Article  PubMed  Google Scholar 

  65. Kang Y, Lee JM, Kim SH, et al. (2012) Intrahepatic Mass-forming cholangiocarcinoma: enhancement Patterns of gadoxetic acid-enhanced MR images. Radiology 264(3):751–760

    Article  PubMed  Google Scholar 

  66. Rohrer M, Bauer H, Mintorovitch J, et al. (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  67. Goshima S, Kanematsu M, Kondo H, et al. (2013) Evaluation of optimal scan delay for gadoxetate disodium-enhanced hepatic arterial phase MRI using MR fluoroscopic triggering and slow injection technique. AJR 201(3):578–582

    Article  PubMed  Google Scholar 

  68. Motosugi U, Ichikawa T, Sou H, et al. (2009) Dilution method of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). J Magn Reson Imaging 30:849–854

    Article  PubMed  Google Scholar 

  69. Motosugi U, Ichikawa T, Sano K, et al. (2011) Double-dose gadoxetic acid-enhanced magnetic resonance imaging in patients with chronic liver disease. Invest Radiol 46(2):141–145

    Article  CAS  PubMed  Google Scholar 

  70. Davenport MS, Viglianti BL, Al-Hawary MM, et al. (2013) Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 266(2):452–461

    Article  PubMed  Google Scholar 

  71. Pietryga JA, Burke LM, Marin D, et al. (2014) Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology 271(2):426–434

    Article  PubMed  Google Scholar 

  72. Cieszanowski A, Stadnik A, Lezak A, et al. (2013) Detection of active bile leak with Gd-EOB-DTPA enhanced MR cholangiography: comparison of 20-25 min delayed and 60-180 min delayed images. Eur J Radiol 82(12):2176–2182

    Article  PubMed  Google Scholar 

  73. Shinagawa Y, Sakamoto K, Fujimitsu R, et al. (2012) Pseudolesion of the liver on gadoxetate disodium-enhanced MR images obtained after transarterial chemoembolization for hepatocellular carcinoma: clinicoradiologic correlation. AJR 199(5):1010–1017

    Article  PubMed  Google Scholar 

  74. Ringe KI, Gupta RT, Brady CM, et al. (2010) Respiratory-triggered three-dimensional T2-weighted MR cholangiography after injection of gadoxetate disodium: is it still reliable? Radiology 255(2):451–458

    Article  PubMed  Google Scholar 

  75. Jarnagin WR, Gonen M, Fong Y, et al. (2002) Improvement in perioperative outcome after hepatic resection: analysis of 1,803 consecutive cases over the past decade. Ann Surg 236:397–406

    Article  PubMed Central  PubMed  Google Scholar 

  76. Breitenstein S, Apestegui C, Petrowsky H, et al. (2009) “State of the art” in liver resection and living donor liver transplantation: a worldwide survey of 100 liver centers. World J Surg 33:797–803

    Article  PubMed  Google Scholar 

  77. Zorzi M, Barca A, Falcini F, et al. (2007) Screening for colorectal cancer in Italy: 2005 survey. Epidemiol Prev 31:49–60

    PubMed  Google Scholar 

  78. Guglielmi A, Ruzzenente A, Conci S, et al. (2012) How much remnant is enough in liver resection? Dig Surg 29:6–17

    Article  PubMed  Google Scholar 

  79. Seyama Y, Kokudo N (2009) Assessment of liver function for safe hepatic resection. Hepatol Res 39:107–116

    Article  PubMed  Google Scholar 

  80. Morris-Stiff G, Gomez D, Prasad R (2009) Quantitative assessment of hepatic function and its relevance to the liver surgeon. J Gastrointest Surg 13:374–385

    Article  CAS  PubMed  Google Scholar 

  81. Motosugi U, Ichikawa T, Oguri M, et al. (2011) Staging liver fibrosis by using liver-enhancement ratio of gadoxetic acid-enhanced MR imaging: comparison with aspartate aminotransferase-to-platelet ratio index. Magn Reson Imaging 29:1047–1052

    Article  CAS  PubMed  Google Scholar 

  82. Tamada T, Ito K, Higaki A, et al. (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80:e311–e316

    Article  PubMed  Google Scholar 

  83. Cho SH, Kang UR, Kim JD, et al. (2011) The value of gadoxetate disodium-enhanced MR imaging for predicting posthepatectomy liver failure after major hepatic resection: a preliminary study. Eur J Radiol 80:e195–e200

    Article  PubMed  Google Scholar 

  84. Verloh N, Haimerl M, Zeman F, et al. (2014) Assessing liver function by liver enhancement during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MRI at 3 Tesla. Eur Radiol 24(5):1013–1019

    Article  CAS  PubMed  Google Scholar 

  85. Matsushima S, Sato Y, Yamaura H, et al. (2014) Visualization of liver uptake function using the uptake contrast-enhanced ratio in hepatobiliary phase imaging. Magn Reson Imaging 32(6):654–659

    Article  PubMed  Google Scholar 

  86. Nilsson H, Nordell A, Vargas R, et al. (2009) Assessment of hepatic extraction fraction and input relative blood flow using dynamic hepatocyte-specific contrast-enhanced MRI. J Magn Reson Imaging 29:1323–1331

    Article  PubMed  Google Scholar 

  87. Nilsson H, Blomqvist L, Douglas L, et al. (2010) Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI. HPB (Oxford) 12:567–576

    Article  Google Scholar 

  88. Sourbron S, Sommer WH, Reiser MF, et al. (2012) Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology 263:874–883

    Article  PubMed  Google Scholar 

  89. Abdalla EK, Denys A, Chevalier P, et al. (2004) Total and segmental liver volume variations: implications for liver surgery (abstract). Surgery 135:404–410

    Article  PubMed  Google Scholar 

  90. Sanyal A, Poklepovic A, Moyneur E, et al. (2010) Population-based risk factors and resource utilization for HCC: US perspective. Curr Med Res Opin 26:2183–2191

    Article  CAS  PubMed  Google Scholar 

  91. Bastati N, Feier D, Wibmer A, et al. (2014) Noninvasive differentiation of simple steatosis and steatohepatitis by using gadoxetic acid-enhanced MR imaging in patients with nonalcoholic fatty liver disease: a proof-of-concept study. Radiology 271(3):739–747

    Article  PubMed  Google Scholar 

  92. Ding Y, Rao SX, Meng T, et al. (2014) Usefulness of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging in assessment of non-alcoholic fatty liver disease. Eur Radiol 24(4):959–966

    Article  PubMed  Google Scholar 

  93. Tsuda N, Okada M, Murakami T (2007) Potential of gadoliniumethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for differential diagnosis of nonalcoholic steatohepatitis and fatty liver in rats using magnetic resonance imaging. Invest Radiol 42:242–247

    Article  CAS  PubMed  Google Scholar 

  94. Wu Z, Matsui O, Kitao A, et al. (2013) Usefulness of Gd-EOB-DTPA-enhanced MR imaging in the evaluation of simple steatosis and nonalcoholic steatohepatitis. J Magn Reson Imaging 37:1137–1143

    Article  PubMed  Google Scholar 

  95. Sonoda A, Nitta N, Ohta S, et al. (2011) The possibility of differentiation between nonalcoholic steatohepatitis and fatty liver in rabbits on Gd-EOB-DTPA-enhanced open-type MRI scans. Acad Radiol 18:525–529

    Article  PubMed  Google Scholar 

  96. Tsuda N, Okada M, Murakami T (2010) New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 73(1):137–142

    Article  PubMed  Google Scholar 

  97. Tsuda N, Matsui O (2011) Signal profile on Gd-EOB-DTPA-enhanced MR imaging in non-alcoholic steatohepatitis and liver cirrhosis induced in rats: correlationwith transporter expression. Eur Radiol 21(12):2542–2550

    Article  PubMed  Google Scholar 

  98. Pascolo L, Cupelli F, Anelli PL, et al. (1999) Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun 257:746–752

    Article  CAS  PubMed  Google Scholar 

  99. Katsube T, Okada M, Kumano S, et al. (2011) Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Invest Radiol 46:277–283

    Article  PubMed  Google Scholar 

  100. Katsube T, Okada M, Kumano S, et al. (2012) Estimation of liver function using T2* mapping on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. Eur J Radiol 81:1460–1464

    Article  PubMed  Google Scholar 

  101. Materne R, Smith AM, Peeters F, et al. (2002) Assessment of hepatic perfusion parameters with dynamic magnetic resonance imaging. Magn Reson Med 47:135–142

    Article  CAS  PubMed  Google Scholar 

  102. Horsthuis K, Nederveen AJ, de Feiter MW, et al. (2009) Mapping of T1-values and gadolinium-concentrations in MRI as indicator of disease activity in luminal Crohn’s disease: a feasibility study. J Magn Reson Imaging 29(2):488–493

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Christopher J. Lisanti receives royalties from Lippincott, Williams and Wilkins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan B. Schwope.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwope, R.B., May, L.A., Reiter, M.J. et al. Gadoxetic acid: pearls and pitfalls. Abdom Imaging 40, 2012–2029 (2015). https://doi.org/10.1007/s00261-015-0354-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0354-7

Keywords

Navigation