Skip to main content

Advertisement

Log in

Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging

  • Invited update
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

New anticancer therapeutics that target tumor blood vessels promise improved efficacy and tolerability in humans. Early phase 1 drug trials have shown that the maximum tolerated dose may be inappropriate for more advanced clinical studies with efficacy endpoints. More advanced clinical trials have demonstrated that morphologic assessments of tumor response are of limited value for gauging the efficacy of treatment. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can serve as pharmacodynamic indicator of biological activity for antivascular cancer drugs by helping to define the biologically active dose. DCE-MRI studies may also predict the efficacy of treatment on the basis of changes observed. If DCE-MRI is to be used for the selection of antivascular drugs that advance into efficacy trials, then it will be necessary to develop standardized approaches to measurement and robust analytic approaches with clear accepted endpoints specified prospectively that have biological validity. Such developments will be essential for multicenter trials in which it will be necessary to establish effective cross-site standardization of measurements and evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. EM Conway D Collen P Carmeliet (2001) ArticleTitleMolecular mechanisms of blood vessel growth Cardiovasc Res. 49 507–521 Occurrence Handle10.1016/S0008-6363(00)00281-9 Occurrence Handle1:CAS:528:DC%2BD3MXptlWrsw%3D%3D Occurrence Handle11166264

    Article  CAS  PubMed  Google Scholar 

  2. J Folkman (1995) ArticleTitleAngiogenesis in cancer, vascular, rheumatoid and other disease Nat Med. 1 27–31 Occurrence Handle10.1038/nm0195-27 Occurrence Handle1:CAS:528:DyaK2MXjs1KnsLk%3D Occurrence Handle7584949

    Article  CAS  PubMed  Google Scholar 

  3. K Kaban RS Herbst (2002) ArticleTitleAngiogenesis as a target for cancer therapy Hematol Oncol Clin North Am. 16 1125–1171 Occurrence Handle10.1016/S0889-8588(02)00047-3 Occurrence Handle12512387

    Article  PubMed  Google Scholar 

  4. PL Choyke AJ Dwyer MV Knopp (2003) ArticleTitleFunctional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging J Magn Reson Imaging 17 509–520 Occurrence Handle10.1002/jmri.10304 Occurrence Handle12720260

    Article  PubMed  Google Scholar 

  5. GJ Parker PS Tofts (1999) ArticleTitlePharmacokinetic analysis of neoplasms using contrast-enhanced dynamic magnetic resonance imaging Top Magn Reson Imaging 10 130–142 Occurrence Handle10.1002/(SICI)1522-2586(199908)10:2<130::AID-JMRI4>3.0.CO;2-R Occurrence Handle1:STN:280:DC%2BD3c%2FhslOqsg%3D%3D Occurrence Handle10551628

    Article  CAS  PubMed  Google Scholar 

  6. AR Padhani (2002) ArticleTitleDynamic contrast-enhanced MRI in clinical oncology: current status and future directions J Magn Reson Imaging 16 407–422 Occurrence Handle10.1002/jmri.10176 Occurrence Handle12353256

    Article  PubMed  Google Scholar 

  7. Leach MO, Brindle KM, Evelhoch JL, et al. Assessment of anti-angiogenic and anti-vascular therapeutics using magnetic resonance imaging: recommendations for appropriate methodology for clinical trials. In: Proceedings of the International Society of Magnetic Resonance in Medicine, 11th scientific meeting. Toronto, 2003:1268.

  8. J Folkman (1996) ArticleTitleNew perspectives in clinical oncology from angiogenesis research Eur J Cancer 32A 2534–2539 Occurrence Handle10.1016/S0959-8049(96)00423-6 Occurrence Handle1:STN:280:ByiB3M3kvVw%3D Occurrence Handle9059344

    Article  CAS  PubMed  Google Scholar 

  9. JW Rak BD St Croix RS Kerbel (1995) ArticleTitleConsequences of angiogenesis for tumor progression, metastasis and cancer therapy Anticancer Drugs 6 3–18 Occurrence Handle1:CAS:528:DyaK2MXktlGgtrY%3D

    CAS  Google Scholar 

  10. R Gilles B Zafrani JM Guinebretiere et al. (1995) ArticleTitleDuctal carcinoma in situ: MR imaging–histopathologic correlation Radiology 196 415–419 Occurrence Handle1:STN:280:ByqA2czhtVE%3D Occurrence Handle7617854

    CAS  PubMed  Google Scholar 

  11. YN Park YB Kim KM Yang C Park (2000) ArticleTitleIncreased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis Arch Pathol Lab Med 124 1061–1065 Occurrence Handle1:CAS:528:DC%2BD3cXlsFWjurc%3D Occurrence Handle10888784

    CAS  PubMed  Google Scholar 

  12. G Gasparini M Toi R Miceli et al. (1999) ArticleTitleClinical relevance of vascular endothelial growth factor and thymidine phosphorylase in patients with node-positive breast cancer treated with either adjuvant chemotherapy or hormone therapy Cancer J Sci Am 5 101–111 Occurrence Handle1:STN:280:DyaK1M3hsV2ntw%3D%3D Occurrence Handle10198732

    CAS  PubMed  Google Scholar 

  13. A Obermair E Kucera K Mayerhofer et al. (1997) ArticleTitleVascular endothelial growth factor (VEGF) in human breast cancer: correlation with disease-free survival Int J Cancer 74 455–458 Occurrence Handle10.1002/(SICI)1097-0215(19970822)74:4<455::AID-IJC17>3.0.CO;2-8 Occurrence Handle1:CAS:528:DyaK2sXlslKis7s%3D Occurrence Handle9291439

    Article  CAS  PubMed  Google Scholar 

  14. B Linderholm B Tavelin K Grankvist R Henriksson (1998) ArticleTitleVascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma J Clin Oncol. 16 3121–3128 Occurrence Handle1:CAS:528:DyaK1cXmtFSlsb4%3D Occurrence Handle9738584

    CAS  PubMed  Google Scholar 

  15. N Weidner (1998) ArticleTitleTumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow J Pathol. 184 119–122 Occurrence Handle10.1002/(SICI)1096-9896(199802)184:2<119::AID-PATH17>3.0.CO;2-D Occurrence Handle1:STN:280:DyaK1c3msFCisg%3D%3D Occurrence Handle9602700

    Article  CAS  PubMed  Google Scholar 

  16. M Neeman JM Provenzale MW Dewhirst (2001) ArticleTitleMagnetic resonance imaging applications in the evaluation of tumor angiogenesis Semin Radiat Oncol. 11 70–82 Occurrence Handle10.1053/srao.2001.18105 Occurrence Handle1:STN:280:DC%2BD3M7islCitA%3D%3D Occurrence Handle11146044

    Article  CAS  PubMed  Google Scholar 

  17. HF Dvorak JA Nagy D Feng et al. (1999) ArticleTitleVascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis Curr Top Microbiol Immunol 237 97–132 Occurrence Handle1:CAS:528:DyaK1MXitVKgsQ%3D%3D Occurrence Handle9893348

    CAS  PubMed  Google Scholar 

  18. LE Benjamin D Golijanin A Itin et al. (1999) ArticleTitleSelective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal J Clin Invest 103 159–165 Occurrence Handle1:CAS:528:DyaK1MXltFeruw%3D%3D Occurrence Handle9916127

    CAS  PubMed  Google Scholar 

  19. MW Dewhirst (1993) Angiogenesis and blood flow in solid tumors B Teicher (Eds) Drug resistance in oncology Marcel Dekker New York 3–24

    Google Scholar 

  20. RD Braun JL Lanzen MW Dewhirst (1999) ArticleTitleFourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats Am J Physiol. 277 H551–568 Occurrence Handle1:CAS:528:DyaK1MXls1aiu7g%3D Occurrence Handle10444480

    CAS  PubMed  Google Scholar 

  21. PB Vermeulen G Gasparini SB Fox et al. (1996) ArticleTitleQuantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation Eur J Cancer 32A 2474–2484 Occurrence Handle10.1016/S0959-8049(96)00379-6 Occurrence Handle1:STN:280:ByiB3M3kvVQ%3D Occurrence Handle9059336

    Article  CAS  PubMed  Google Scholar 

  22. OA Kerckhaert EE Voest (2001) The prognostic and diagnostic value of circulating angiogenic factors in cancer patients EE Voest PA D’Amore (Eds) Tumor angiogenesis and microcirculation Marcel Dekker New York 487–500

    Google Scholar 

  23. B Endrich P Vaupel (1998) The role of microcirculation in the treatment of malignant tumors: facts and fiction M Molls P Vaupel (Eds) Blood perfusion and microenvironment of human tumors Springer-Verlag Berlin 19–39

    Google Scholar 

  24. ZM Bhujwalla D Artemov J Glockner (1999) ArticleTitleTumor angiogenesis, vascularization, and contrast-enhanced magnetic resonance imaging Top Magn Reson Imaging 10 92–103 Occurrence Handle1:STN:280:DC%2BD3c%2FhslOrtA%3D%3D Occurrence Handle10551624

    CAS  PubMed  Google Scholar 

  25. RJ Gillies ZM Bhujwalla J Evelhoch et al. (2000) ArticleTitleApplications of magnetic resonance in model systems: tumor biology and physiology Neoplasia 2 139–151 Occurrence Handle10.1038/sj.neo.7900076 Occurrence Handle1:STN:280:DC%2BD3cvhvFKrtQ%3D%3D Occurrence Handle10933073

    Article  CAS  PubMed  Google Scholar 

  26. R Brasch K Turetschek (2000) ArticleTitleMRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report Eur J Radiol. 34 148–155 Occurrence Handle10.1016/S0720-048X(00)00195-9 Occurrence Handle1:STN:280:DC%2BD3cvnt1Shuw%3D%3D Occurrence Handle10927157

    Article  CAS  PubMed  Google Scholar 

  27. RC Brasch KC Li JE Husband et al. (2000) ArticleTitleIn vivo monitoring of tumor angiogenesis with MR imaging Acad Radiol. 7 812–823 Occurrence Handle1:STN:280:DC%2BD3crgtFCntQ%3D%3D Occurrence Handle11048879

    CAS  PubMed  Google Scholar 

  28. R Weissleder U Mahmood (2001) ArticleTitleMolecular imaging Radiology 219 316–333 Occurrence Handle1:CAS:528:DC%2BD3MXjs1ekur0%3D Occurrence Handle11323453

    CAS  PubMed  Google Scholar 

  29. FA Howe SP Robinson DJ McIntyre et al. (2001) ArticleTitleIssues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours NMR Biomed. 14 497–506 Occurrence Handle10.1002/nbm.716 Occurrence Handle1:STN:280:DC%2BD3MnpvVGqtw%3D%3D Occurrence Handle11746943

    Article  CAS  PubMed  Google Scholar 

  30. HE Daldrup DM Shames W Husseini et al. (1998) ArticleTitleQuantification of the extraction fraction for gadopentetate across breast cancer capillaries Magn Reson Med 40 537–543 Occurrence Handle1:CAS:528:DyaK1cXms1Chtbk%3D Occurrence Handle9771570

    CAS  PubMed  Google Scholar 

  31. PS Tofts G Brix DL Buckley et al. (1999) ArticleTitleEstimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols J Magn Reson Imaging 10 223–232 Occurrence Handle10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S Occurrence Handle1:STN:280:DyaK1Mvjsl2jtw%3D%3D Occurrence Handle10508281

    Article  CAS  PubMed  Google Scholar 

  32. EL Barbier L Lamalle M Decorps (2001) ArticleTitleMethodology of brain perfusion imaging J Magn Reson Imaging 13 496–520 Occurrence Handle10.1002/jmri.1073 Occurrence Handle1:STN:280:DC%2BD3M7os1eruw%3D%3D Occurrence Handle11276094

    Article  CAS  PubMed  Google Scholar 

  33. AG Sorensen AL Tievsky L Ostergaard et al. (1997) ArticleTitleContrast agents in functional MR imaging J Magn Reson Imaging 7 47–55 Occurrence Handle1:STN:280:ByiC1M7msVM%3D Occurrence Handle9039593

    CAS  PubMed  Google Scholar 

  34. CZ Simonsen L Ostergaard DF Smith et al. (2000) ArticleTitleComparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking J Magn Reson Imaging 12 411–416 Occurrence Handle10.1002/1522-2586(200009)12:3<411::AID-JMRI6>3.0.CO;2-5 Occurrence Handle1:STN:280:DC%2BD3cvksV2jtw%3D%3D Occurrence Handle10992308

    Article  CAS  PubMed  Google Scholar 

  35. J Dennie JB Mandeville JL Boxerman et al. (1998) ArticleTitleNMR imaging of changes in vascular morphology due to tumor angiogenesis Magn Reson Med. 40 793–799 Occurrence Handle1:STN:280:DyaK1M%2FlsVGmtA%3D%3D Occurrence Handle9840821

    CAS  PubMed  Google Scholar 

  36. R Bruening C Berchtenbreiter N Holzknecht et al. (2000) ArticleTitleEffects of three different doses of a bolus injection of gadodiamide: assessment of regional cerebral blood volume maps in a blinded reader study AJNR 21 1603–1610 Occurrence Handle1:STN:280:DC%2BD3cvovVekug%3D%3D Occurrence Handle11039338

    CAS  PubMed  Google Scholar 

  37. BR Rosen JW Belliveau BR Buchbinder et al. (1991) ArticleTitleContrast agents and cerebral hemodynamics Magn Reson Med. 19 285–292 Occurrence Handle1:STN:280:By6A2M7gslw%3D Occurrence Handle1881317

    CAS  PubMed  Google Scholar 

  38. F Wenz K Rempp T Hess et al. (1996) ArticleTitleEffect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging AJR 166 187–193 Occurrence Handle1:STN:280:BymC3M%2Flt1c%3D Occurrence Handle8571873

    CAS  PubMed  Google Scholar 

  39. ME Moseley Z Vexler HS Asgari et al. (1991) ArticleTitleComparison of Gd- and Dy-chelates for T2 contrast-enhanced imaging Magn Reson Med. 22 259–264 Occurrence Handle1:CAS:528:DyaK38Xhs12isrY%3D Occurrence Handle1812356

    CAS  PubMed  Google Scholar 

  40. P Reimer G Schuierer T Balzer PE Peters (1995) ArticleTitleApplication of a superparamagnetic iron oxide (Resovist) for MR imaging of human cerebral blood volume Magn Reson Med. 34 694–697 Occurrence Handle1:STN:280:BymC3s%2Fmt1E%3D Occurrence Handle8544689

    CAS  PubMed  Google Scholar 

  41. JA d’Arcy DJ Collins IJ Rowland et al. (2002) ArticleTitleApplications of sliding window reconstruction with cartesian sampling for dynamic contrast enhanced MRI NMR Biomed. 15 174–183 Occurrence Handle10.1002/nbm.755 Occurrence Handle1:STN:280:DC%2BD387jsFamug%3D%3D Occurrence Handle11870913

    Article  CAS  PubMed  Google Scholar 

  42. EA Knopp S Cha G Johnson et al. (1999) ArticleTitleGlial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging Radiology 211 791–798 Occurrence Handle1:STN:280:DyaK1M3otVyktg%3D%3D Occurrence Handle10352608

    CAS  PubMed  Google Scholar 

  43. T Ichikawa H Haradome J Hachiya et al. (1998) ArticleTitleCharacterization of hepatic lesions by perfusion-weighted MR imaging with an echoplanar sequence AJR 170 1029–1034 Occurrence Handle1:STN:280:DyaK1c7ptFSrtw%3D%3D Occurrence Handle9530054

    CAS  PubMed  Google Scholar 

  44. T Ichikawa AS Arbab T Araki et al. (1999) ArticleTitlePerfusion MR imaging with a superparamagnetic iron oxide using T2-weighted and susceptibility-sensitive echoplanar sequences: evaluation of tumor vascularity in hepatocellular carcinoma AJR 173 207–213 Occurrence Handle1:STN:280:DyaK1MzitlamtQ%3D%3D Occurrence Handle10397128

    CAS  PubMed  Google Scholar 

  45. CK Kuhl H Bieling J Gieseke et al. (1997) ArticleTitleBreast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging Radiology 202 87–95 Occurrence Handle1:STN:280:ByiC2c7psVI%3D Occurrence Handle8988196

    CAS  PubMed  Google Scholar 

  46. KA Kvistad S Lundgren HE Fjosne et al. (1999) ArticleTitleDifferentiating benign and malignant breast lesions with T2*-weighted first pass perfusion imaging Acta Radiol 40 45–51 Occurrence Handle1:STN:280:DyaK1M7jvFCrsA%3D%3D Occurrence Handle9973902

    CAS  PubMed  Google Scholar 

  47. KL Weind CF Maier BK Rutt M Moussa (1998) ArticleTitleInvasive carcinomas and fibroadenomas of the breast: comparison of microvessel distributions—implications for imaging modalities Radiology 208 477–483 Occurrence Handle1:STN:280:DyaK1czksFGgsg%3D%3D Occurrence Handle9680579

    CAS  PubMed  Google Scholar 

  48. Yung WKA, Friedman H, Conrad C, et al. A phase I trial of single-agent PTK 787/ZK 222584 (PTK/ZK), an oral VEGFR tyrosine kinase inhibitor, in patients with recurrent glioblastoma multiforme. In: American Society of Clinical Oncology. Chicago, 2003:395

  49. HB Larsson M Stubgaard JL Frederiksen et al. (1990) ArticleTitleQuantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors Magn Reson Med. 16 117–131 Occurrence Handle1:STN:280:By6D2szpvFE%3D Occurrence Handle2255233

    CAS  PubMed  Google Scholar 

  50. P Gowland P Mansfield P Bullock et al. (1992) ArticleTitleDynamic studies of gadolinium uptake in brain tumors using inversion-recovery echo-planar imaging Magn Reson Med. 26 241–258 Occurrence Handle1:CAS:528:DyaK38XmtVyju7k%3D Occurrence Handle1513249

    CAS  PubMed  Google Scholar 

  51. GJ Parker J Suckling SF Tanner et al. (1997) ArticleTitleProbing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics J Magn Reson Imaging 7 564–574 Occurrence Handle1:STN:280:ByiA3MzmsVY%3D Occurrence Handle9170043

    CAS  PubMed  Google Scholar 

  52. FW Flickinger JD Allison RM Sherry JC Wright (1993) ArticleTitleDifferentiation of benign from malignant breast masses by time-intensity evaluation of contrast enhanced MRI Magn Reson Imaging 11 617–620 Occurrence Handle10.1016/0730-725X(93)90002-U Occurrence Handle1:STN:280:ByyA2cjmtVQ%3D Occurrence Handle8345775

    Article  CAS  PubMed  Google Scholar 

  53. WA Kaiser E Zeitler (1989) ArticleTitleMR imaging of the breast: fast imaging sequences with and without Gd-DTPA Preliminary observations Radiology 170 681–686 Occurrence Handle1:STN:280:BiaC38bjt1M%3D Occurrence Handle2916021

    CAS  PubMed  Google Scholar 

  54. IS Gribbestad G Nilsen HE Fjosne et al. (1994) ArticleTitleComparative signal intensity measurements in dynamic gadolinium-enhanced MR mammography J Magn Reson Imaging 4 477–480 Occurrence Handle1:STN:280:ByuA3sbmt1c%3D Occurrence Handle8061451

    CAS  PubMed  Google Scholar 

  55. JL Evelhoch (1999) ArticleTitleKey factors in the acquisition of contrast kinetic data for oncology J Magn Reson Imaging 10 254–259 Occurrence Handle10.1002/(SICI)1522-2586(199909)10:3<254::AID-JMRI5>3.0.CO;2-9 Occurrence Handle1:STN:280:DyaK1Mvjsl2jug%3D%3D Occurrence Handle10508284

    Article  CAS  PubMed  Google Scholar 

  56. GJ Parker I Baustert SF Tanner MO Leach (2000) ArticleTitleImproving image quality and T(1) measurements using saturation recovery turboFLASH with an approximate K-space normalisation filter Magn Reson Imaging 18 157–167 Occurrence Handle10.1016/S0730-725X(99)00124-1 Occurrence Handle1:STN:280:DC%2BD3c7ovF2ktw%3D%3D Occurrence Handle10722976

    Article  CAS  PubMed  Google Scholar 

  57. PS Tofts (1997) ArticleTitleModeling tracer kinetics in dynamic Gd-DTPA MR imaging J Magn Reson Imaging 7 91–101 Occurrence Handle1:STN:280:ByiC1M7msFY%3D Occurrence Handle9039598

    CAS  PubMed  Google Scholar 

  58. PS Tofts B Berkowitz MD Schnall (1995) ArticleTitleQuantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model Magn Reson Med. 33 564–568 Occurrence Handle1:STN:280:ByqB1Mrls1Y%3D Occurrence Handle7776889

    CAS  PubMed  Google Scholar 

  59. CS Landis X Li FW Telang et al. (2000) ArticleTitleDetermination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange Magn Reson Med. 44 563–574 Occurrence Handle10.1002/1522-2594(200010)44:4<563::AID-MRM10>3.0.CO;2-# Occurrence Handle1:CAS:528:DC%2BD3cXnsVegtL4%3D Occurrence Handle11025512

    Article  CAS  PubMed  Google Scholar 

  60. DL Buckley (2002) ArticleTitleTranscytolemmal water exchange and its affect on the determination of contrast agent concentration in vivo Magn Reson Med. 47 420–421 Occurrence Handle10.1002/mrm.10098 Occurrence Handle11810690

    Article  PubMed  Google Scholar 

  61. HJ Weinmann M Laniado W Mutzel (1984) ArticleTitlePharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers Physiol Chem Phys Med NMR 16 167–172 Occurrence Handle1:CAS:528:DyaL2cXmt1Kit7c%3D Occurrence Handle6505043

    CAS  PubMed  Google Scholar 

  62. M Rijpkema JH Kaanders FB Joosten et al. (2001) ArticleTitleMethod for quantitative mapping of dynamic MRI contrast agent uptake in human tumors J Magn Reson Imaging 14 457–463 Occurrence Handle10.1002/jmri.1207 Occurrence Handle1:STN:280:DC%2BD3MrkvFOjsw%3D%3D Occurrence Handle11599071

    Article  CAS  PubMed  Google Scholar 

  63. DL Buckley (2002) ArticleTitleUncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T(1)-weighted MRI Magn Reson Med. 47 601–606 Occurrence Handle10.1002/mrm.10080 Occurrence Handle11870848

    Article  PubMed  Google Scholar 

  64. PC Stomper JS Winston S Herman et al. (1997) ArticleTitleAngiogenesis and dynamic MR imaging gadolinium enhancement of malignant and benign breast lesions Breast Cancer Res Treat 45 39–46 Occurrence Handle10.1023/A:1005897227030 Occurrence Handle1:STN:280:ByiH3s7gtFI%3D Occurrence Handle9285115

    Article  CAS  PubMed  Google Scholar 

  65. H Hawighorst PG Knapstein W Weikel et al. (1997) ArticleTitleAngiogenesis of uterine cervical carcinoma: characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement Cancer Res. 57 4777–4786 Occurrence Handle1:CAS:528:DyaK2sXnt12gu7w%3D Occurrence Handle9354439

    CAS  PubMed  Google Scholar 

  66. O Tynninen HJ Aronen M Ruhala et al. (1999) ArticleTitleMRI enhancement and microvascular density in gliomas. Correlation with tumor cell proliferation Invest Radiol. 34 427–434 Occurrence Handle10.1097/00004424-199906000-00007 Occurrence Handle1:STN:280:DyaK1M3otFejsA%3D%3D Occurrence Handle10353036

    Article  CAS  PubMed  Google Scholar 

  67. DL Buckley PJ Drew S Mussurakis et al. (1997) ArticleTitleMicrovessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI J Magn Reson Imaging 7 461–464 Occurrence Handle1:STN:280:ByiA3Mzmt1I%3D Occurrence Handle9170027

    CAS  PubMed  Google Scholar 

  68. CA Hulka WB Edmister BL Smith et al. (1997) ArticleTitleDynamic echo-planar imaging of the breast: experience in diagnosing breast carcinoma and correlation with tumor angiogenesis Radiology 205 837–842 Occurrence Handle1:STN:280:DyaK1c%2FlsFalsQ%3D%3D Occurrence Handle9393545

    CAS  PubMed  Google Scholar 

  69. RA Cooper BM Carrington JA Loncaster et al. (2000) ArticleTitleTumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix Radiother Oncol. 57 53–59 Occurrence Handle10.1016/S0167-8140(00)00259-0 Occurrence Handle1:STN:280:DC%2BD3M%2FmvVWltg%3D%3D Occurrence Handle11033189

    Article  CAS  PubMed  Google Scholar 

  70. MY Su YC Cheung JP Fruehauf et al. (2003) ArticleTitleCorrelation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer J Magn Reson Imaging 18 467–477 Occurrence Handle10.1002/jmri.10380 Occurrence Handle14508784

    Article  PubMed  Google Scholar 

  71. MV Knopp E Weiss HP Sinn et al. (1999) ArticleTitlePathophysiologic basis of contrast enhancement in breast tumors J Magn Reson Imaging 10 260–266 Occurrence Handle10.1002/(SICI)1522-2586(199909)10:3<260::AID-JMRI6>3.0.CO;2-7 Occurrence Handle1:STN:280:DyaK1Mvjsl2juw%3D%3D Occurrence Handle10508285

    Article  CAS  PubMed  Google Scholar 

  72. ZM Bhujwalla D Artemov K Natarajan et al. (2001) ArticleTitleVascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts Neoplasia 3 143–153 Occurrence Handle10.1038/sj.neo.7900129 Occurrence Handle1:STN:280:DC%2BD3MzlvVWksA%3D%3D Occurrence Handle11420750

    Article  CAS  PubMed  Google Scholar 

  73. CD Pham TP Roberts N Bruggen Particlevan et al. (1998) ArticleTitleMagnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor Cancer Invest 16 225–230 Occurrence Handle1:CAS:528:DyaK1cXjtF2msr8%3D Occurrence Handle9589031

    CAS  PubMed  Google Scholar 

  74. A Gossmann TH Helbich N Kuriyama et al. (2002) ArticleTitleDynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme J Magn Reson Imaging 15 233–240 Occurrence Handle10.1002/jmri.10072 Occurrence Handle11891967

    Article  PubMed  Google Scholar 

  75. Thomas A, Morgan B, Drevs J, et al. Pharmacodynamic results using dynamic contrast enhanced magnetic resonance imaging, of 2 phase 1 studies of the VEGF inhibitor PTK787/ZK 222584 in patients with liver metastases from colorectal cancer. In: Proceedings of American Society of Clinical Oncology. San Francisco, 2001:A279

  76. R Matsubayashi Y Matsuo G Edakuni et al. (2000) ArticleTitleBreast masses with peripheral rim enhancement on dynamic contrast-enhanced MR images: correlation of MR findings with histologic features and expression of growth factors Radiology 217 841–848 Occurrence Handle1:STN:280:DC%2BD3M%2FotVOmtA%3D%3D Occurrence Handle11110952

    CAS  PubMed  Google Scholar 

  77. Y Yamashita T Baba Y Baba et al. (2000) ArticleTitleDynamic contrast-enhanced MR imaging of uterine cervical cancer: pharmacokinetic analysis with histopathologic correlation and its importance in predicting the outcome of radiation therapy Radiology 216 803–809 Occurrence Handle1:STN:280:DC%2BD3cvktValsQ%3D%3D Occurrence Handle10966715

    CAS  PubMed  Google Scholar 

  78. H Lyng AO Vorren K Sundfor et al. (2001) ArticleTitleAssessment of tumor oxygenation in human cervical carcinoma by use of dynamic Gd-DTPA–enhanced MR imaging J Magn Reson Imaging 14 750–756 Occurrence Handle10.1002/jmri.10016 Occurrence Handle1:STN:280:DC%2BD3Mnps1ymtw%3D%3D Occurrence Handle11747032

    Article  CAS  PubMed  Google Scholar 

  79. H Konouchi J Asaumi Y Yanagi et al. (2003) ArticleTitleEvaluation of tumor proliferation using dynamic contrast enhanced-MRI of oral cavity and oropharyngeal squamous cell carcinoma Oral Oncol. 39 290–295 Occurrence Handle10.1016/S1368-8375(02)00119-7 Occurrence Handle12618202

    Article  PubMed  Google Scholar 

  80. HJ Woude Particlevan der KL Verstraete PC Hogendoorn et al. (1998) ArticleTitleMusculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization? Radiology 208 821–828 Occurrence Handle9722866

    PubMed  Google Scholar 

  81. PF Liu GP Krestin RA Huch et al. (1998) ArticleTitleMRI of the uterus, uterine cervix, and vagina: diagnostic performance of dynamic contrast-enhanced fast multiplanar gradient-echo imaging in comparison with fast spin-echo T2-weighted pulse imaging Eur Radiol. 8 1433–1440 Occurrence Handle10.1007/s003300050569 Occurrence Handle1:STN:280:DyaK1M%2FntVensQ%3D%3D Occurrence Handle9853231

    Article  CAS  PubMed  Google Scholar 

  82. JO Barentsz GJ Jager PB Vierzen Particlevan et al. (1996) ArticleTitleStaging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrast-enhanced MR imaging Radiology 201 185–193 Occurrence Handle1:STN:280:BymH3MzjvVU%3D Occurrence Handle8816542

    CAS  PubMed  Google Scholar 

  83. GJ Jager ET Ruijter CA Kaa Particlevan de et al. (1997) ArticleTitleDynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results Radiology 203 645–652 Occurrence Handle1:STN:280:ByiA3Mzgsl0%3D Occurrence Handle9169683

    CAS  PubMed  Google Scholar 

  84. RA Huch Boni JA Boner UM Lutolf et al. (1995) ArticleTitleContrast-enhanced endorectal coil MRI in local staging of prostate carcinoma J Comput Assist Tomogr 19 232–237 Occurrence Handle1:STN:280:ByqC1MjnsFM%3D Occurrence Handle7890848

    CAS  PubMed  Google Scholar 

  85. H Hawighorst W Weikel PG Knapstein et al. (1998) ArticleTitleAngiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome Clin Cancer Res 4 2305–2312 Occurrence Handle1:STN:280:DyaK1M%2FhtV2rsQ%3D%3D Occurrence Handle9796959

    CAS  PubMed  Google Scholar 

  86. NA Mayr WT Yuh VA Magnotta et al. (1996) ArticleTitleTumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay Int J Radiat Oncol Biol Phys. 36 623–633 Occurrence Handle10.1016/S0360-3016(97)85090-0 Occurrence Handle1:STN:280:ByiC3cvhvV0%3D Occurrence Handle8948347

    Article  CAS  PubMed  Google Scholar 

  87. R Gilles JM Guinebretiere LG Shapeero et al. (1993) ArticleTitleAssessment of breast cancer recurrence with contrast-enhanced subtraction MR imaging: preliminary results in 26 patients Radiology 188 473–478 Occurrence Handle1:STN:280:ByyA3MjovVA%3D Occurrence Handle8327700

    CAS  PubMed  Google Scholar 

  88. RW Kerslake JN Fox PJ Carleton et al. (1994) ArticleTitleDynamic contrast-enhanced and fat suppressed magnetic resonance imaging in suspected recurrent carcinoma of the breast: preliminary experience Br J Radiol. 67 1158–1168 Occurrence Handle1:STN:280:ByqC2sbktlI%3D Occurrence Handle7874413

    CAS  PubMed  Google Scholar 

  89. S Mussurakis DL Buckley SJ Bowsley et al. (1995) ArticleTitleDynamic contrast-enhanced magnetic resonance imaging of the breast combined with pharmacokinetic analysis of gadolinium-DTPA uptake in the diagnosis of local recurrence of early stage breast carcinoma Invest Radiol. 30 650–662 Occurrence Handle1:STN:280:BymC3sbis1w%3D Occurrence Handle8557506

    CAS  PubMed  Google Scholar 

  90. K Kinkel AA Tardivon P Soyer et al. (1996) ArticleTitleDynamic contrast-enhanced subtraction versus T2-weighted spin-echo MR imaging in the follow-up of colorectal neoplasm: a prospective study of 41 patients Radiology 200 453–458 Occurrence Handle1:STN:280:BymB1MvlvVc%3D Occurrence Handle8685341

    CAS  PubMed  Google Scholar 

  91. JM Hawnaur XP Zhu CE Hutchinson (1998) ArticleTitleQuantitative dynamic contrast enhanced MRI of recurrent pelvic masses in patients treated for cancer Br J Radiol. 71 1136–1142 Occurrence Handle1:STN:280:DyaK1MzmtlOltw%3D%3D Occurrence Handle10434907

    CAS  PubMed  Google Scholar 

  92. TH Dao A Rahmouni F Campana et al. (1993) ArticleTitleTumor recurrence versus fibrosis in the irradiated breast: differentiation with dynamic gadolinium-enhanced MR imaging Radiology 187 751–755 Occurrence Handle1:STN:280:ByyB28fptVU%3D Occurrence Handle8497625

    CAS  PubMed  Google Scholar 

  93. SH Heywang-Kobrunner A Schlegel R Beck et al. (1993) ArticleTitleContrast-enhanced MRI of the breast after limited surgery and radiation therapy J Comput Assist Tomogr 17 891–900 Occurrence Handle1:STN:280:ByuD2cvgtVw%3D Occurrence Handle8227574

    CAS  PubMed  Google Scholar 

  94. L Blomqvist P Fransson T Hindmarsh (1998) ArticleTitleThe pelvis after surgery and radio-chemotherapy for rectal cancer studied with Gd-DTPA–enhanced fast dynamic MR imaging Eur Radiol 8 781–787 Occurrence Handle10.1007/s003300050472 Occurrence Handle1:STN:280:DyaK1c3mslemsA%3D%3D Occurrence Handle9601965

    Article  CAS  PubMed  Google Scholar 

  95. JO Barentsz O Berger-Hartog JA Witjes et al. (1998) ArticleTitleEvaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging Radiology 207 791–797 Occurrence Handle1:STN:280:DyaK1c3nt1yhtA%3D%3D Occurrence Handle9609906

    CAS  PubMed  Google Scholar 

  96. WE Reddick JS Taylor BD Fletcher (1999) ArticleTitleDynamic MR imaging (DEMRI) of microcirculation in bone sarcoma J Magn Reson Imaging 10 277–285 Occurrence Handle10.1002/(SICI)1522-2586(199909)10:3<277::AID-JMRI8>3.0.CO;2-S Occurrence Handle1:STN:280:DyaK1Mvjsl2isw%3D%3D Occurrence Handle10508287

    Article  CAS  PubMed  Google Scholar 

  97. HJ Woude Particlevan der JL Bloem KL Verstraete et al. (1995) ArticleTitleOsteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery AJR 165 593–598 Occurrence Handle7645476

    PubMed  Google Scholar 

  98. MV Knopp G Brix HJ Junkermann HP Sinn (1994) ArticleTitleMR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy Magn Reson Imaging Clin North Am 2 633–658 Occurrence Handle1:STN:280:BymD2M3mvFQ%3D

    CAS  Google Scholar 

  99. Padhani AR, Hayes C, Assersohn L, et al. Response of breast carcinoma to chemotherapy—MR permeability changes using histogram analysis. In: International Society for Magnetic Resonance in Medicine, 8th scientific meeting. Denver, 2000:2160

  100. AF Devries J Griebel C Kremser et al. (2001) ArticleTitleTumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma Cancer Res. 61 2513–2516 Occurrence Handle1:CAS:528:DC%2BD3MXisVSksrw%3D Occurrence Handle11289123

    CAS  PubMed  Google Scholar 

  101. A Vries Particlede J Griebel C Kremser et al. (2000) ArticleTitleMonitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy Radiology 217 385–391 Occurrence Handle11058632

    PubMed  Google Scholar 

  102. NA Mayr WT Yuh JC Arnholt et al. (2000) ArticleTitlePixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer J Magn Reson Imaging 12 1027–1033 Occurrence Handle10.1002/1522-2586(200012)12:6<1027::AID-JMRI31>3.0.CO;2-5 Occurrence Handle1:STN:280:DC%2BD3M7htVaktg%3D%3D Occurrence Handle11105046

    Article  CAS  PubMed  Google Scholar 

  103. ML George AS Dzik-Jurasz AR Padhani et al. (2001) ArticleTitleNon-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer Br J Surg. 88 1628–1636 Occurrence Handle10.1046/j.0007-1323.2001.01947.x Occurrence Handle1:STN:280:DC%2BD3MnptlansQ%3D%3D Occurrence Handle11736977

    Article  CAS  PubMed  Google Scholar 

  104. AR Padhani AD MacVicar CJ Gapinski et al. (2001) ArticleTitleEffects of androgen deprivation on prostatic morphology and vascular permeability evaluated with MR imaging Radiology 218 365–374 Occurrence Handle1:STN:280:DC%2BD3M3lvVaqsw%3D%3D Occurrence Handle11161148

    CAS  PubMed  Google Scholar 

  105. PR Burn JM McCall RJ Chinn et al. (2000) ArticleTitleUterine fibroleiomyoma: MR imaging appearances before and after embolization of uterine arteries Radiology 214 729–734 Occurrence Handle1:STN:280:DC%2BD3c7osV2hug%3D%3D Occurrence Handle10715038

    CAS  PubMed  Google Scholar 

  106. RC Jha SM Ascher I Imaoka JB Spies (2000) ArticleTitleSymptomatic fibroleiomyomata: MR imaging of the uterus before and after uterine arterial embolization Radiology 217 228–235 Occurrence Handle1:STN:280:DC%2BD3cvmsVGhtA%3D%3D Occurrence Handle11012449

    CAS  PubMed  Google Scholar 

  107. W Li DP Brophy Q Chen et al. (2000) ArticleTitleSemiquantitative assessment of uterine perfusion using first pass dynamic contrast-enhanced MR imaging for patients treated with uterine fibroid embolization J Magn Reson Imaging 12 1004–1008 Occurrence Handle10.1002/1522-2586(200012)12:6<1004::AID-JMRI27>3.0.CO;2-# Occurrence Handle1:STN:280:DC%2BD3M7htVaksg%3D%3D Occurrence Handle11105042

    Article  CAS  PubMed  Google Scholar 

  108. Lankester KJ, Taylor NJ, Stirling JJ, et al. Conventional cytotoxic chemotherapy agents do not have acute antivascular effects, as measured by dynamic contrast enhanced MRI (DCE-MRI). In: Proceedings of the American Society of Clinical Oncology, 39th annual meeting. Chicago, 2003:588

  109. SM Galbraith RJ Maxwell MA Lodge et al. (2003) ArticleTitleCombretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging J Clin Oncol. 21 2831–2842 Occurrence Handle10.1200/JCO.2003.05.187 Occurrence Handle1:CAS:528:DC%2BD2cXpsVKjsb8%3D Occurrence Handle12807936

    Article  CAS  PubMed  Google Scholar 

  110. Ah-See MW, Taylor NJ, Makris A, et al. Preliminary evaluation of multi-functional MRI to predict response to neoadjuvant chemotherapy in primary breast cancer. In: Proceedings of the American Society of Clinical Oncology, 39th annual meeting. Chicago, 2003:556

  111. P Workman (2002) ArticleTitleChallenges of PK/PD measurements in modern drug development Eur J Cancer 38 2189–2193 Occurrence Handle10.1016/S0959-8049(02)00395-7 Occurrence Handle1:STN:280:DC%2BD38njtVaksg%3D%3D Occurrence Handle12387843

    Article  CAS  PubMed  Google Scholar 

  112. JK Buolamwini (1999) ArticleTitleNovel anticancer drug discovery Curr Opin Chem Biol. 3 500–509 Occurrence Handle10.1016/S1367-5931(99)80073-8 Occurrence Handle1:CAS:528:DyaK1MXlt1ejurY%3D Occurrence Handle10419854

    Article  CAS  PubMed  Google Scholar 

  113. B Morgan AL Thomas J Drevs et al. (2003) ArticleTitleDynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies J Clin Oncol. 21 3955–3964 Occurrence Handle10.1200/JCO.2003.08.092 Occurrence Handle14517187

    Article  PubMed  Google Scholar 

  114. JC Yang L Haworth RM Sherry et al. (2003) ArticleTitleA randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer N Engl J Med. 349 427–434 Occurrence Handle10.1056/NEJMoa021491 Occurrence Handle1:CAS:528:DC%2BD3sXms1Klu7w%3D Occurrence Handle12890841

    Article  CAS  PubMed  Google Scholar 

  115. P Vajkoczy MD Menger B Vollmar et al. (1999) ArticleTitleInhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy Neoplasia 1 31–41 Occurrence Handle1:CAS:528:DC%2BD3cXhtFOrs7g%3D Occurrence Handle10935468

    CAS  PubMed  Google Scholar 

  116. J Drevs R Muller-Driver C Wittig et al. (2002) ArticleTitlePTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging Cancer Res. 62 4015–4022 Occurrence Handle1:CAS:528:DC%2BD38XlsV2lsLg%3D Occurrence Handle12124335

    CAS  PubMed  Google Scholar 

  117. GC Jayson J Zweit A Jackson et al. (2002) ArticleTitleMolecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies J Natl Cancer Inst. 94 1484–1493 Occurrence Handle1:CAS:528:DC%2BD38XosVans7k%3D Occurrence Handle12359857

    CAS  PubMed  Google Scholar 

  118. SM Galbraith GJ Rustin MA Lodge et al. (2002) ArticleTitleEffects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging J Clin Oncol. 20 3826–3840 Occurrence Handle10.1200/JCO.2002.09.144 Occurrence Handle1:CAS:528:DC%2BD38XntVyns7g%3D Occurrence Handle12228202

    Article  CAS  PubMed  Google Scholar 

  119. Hurwitz H, Fehrenbacher L, Cartwright T, et al. Bevacizumab (a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first-line colorectal cancer (CRC): results of a phase III trial of bevacizumab in combination with bolus IFL (irinotecan, 5-fluorouracil, leucovorin) as first-line therapy in subjects with metastatic CRC. In: American Society of Clinical Oncology. Chicago, 2003:3646

  120. SM Galbraith RJ Maxwell MA Lodge et al. (2003) ArticleTitleCombretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging J Clin Oncol. 21 2831–2842 Occurrence Handle10.1200/JCO.2003.05.187 Occurrence Handle1:CAS:528:DC%2BD2cXpsVKjsb8%3D Occurrence Handle12807936

    Article  CAS  PubMed  Google Scholar 

  121. SM Galbraith DJ Chaplin F Lee et al. (2001) ArticleTitleEffects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo Anticancer Res. 21 93–102 Occurrence Handle1:CAS:528:DC%2BD3MXivFCnu70%3D Occurrence Handle11299795

    CAS  PubMed  Google Scholar 

  122. RJ Maxwell J Wilson VE Prise et al. (2002) ArticleTitleEvaluation of the anti-vascular effects of combretastatin in rodent tumours by dynamic contrast enhanced MRI NMR Biomed. 15 89–98 Occurrence Handle10.1002/nbm.754 Occurrence Handle1:CAS:528:DC%2BD38XisFOltrc%3D Occurrence Handle11870904

    Article  CAS  PubMed  Google Scholar 

  123. K Turetschek A Preda E Floyd et al. (2003) ArticleTitleMRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model Eur J Nucl Med Mol Imaging 30 448–455 Occurrence Handle1:CAS:528:DC%2BD3sXitFGmtbY%3D Occurrence Handle12722742

    CAS  PubMed  Google Scholar 

  124. D Checkley JJ Tessier J Kendrew et al. (2003) ArticleTitleUse of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours Br J Cancer 89 1889–1895 Occurrence Handle10.1038/sj.bjc.6601386 Occurrence Handle1:CAS:528:DC%2BD3sXovVersLg%3D Occurrence Handle14612898

    Article  CAS  PubMed  Google Scholar 

  125. O’Donell A, Trigo J, Raynaud F, et al. A phase I trial of the VEGF inhibitor SU5416, incorporating dynamic contrast enhanced MRI assessment of vascular permeability. In: 36th Annual meeting of the American Society of Clinical Oncology. New Orleans, 2000:685

  126. U Hoffmann G Brix MV Knopp et al. (1995) ArticleTitlePharmacokinetic mapping of the breast: a new method for dynamic MR mammography Magn Reson Med. 33 506–514 Occurrence Handle1:STN:280:ByqB1MrlsFA%3D Occurrence Handle7776881

    CAS  PubMed  Google Scholar 

  127. JA Boer Particleden RK Hoenderop J Smink et al. (1997) ArticleTitlePharmacokinetic analysis of Gd-DTPA enhancement in dynamic three-dimensional MRI of breast lesions J Magn Reson Imaging 7 702–715 Occurrence Handle9243392

    PubMed  Google Scholar 

  128. H Degani V Gusis D Weinstein et al. (1997) ArticleTitleMapping pathophysiological features of breast tumors by MRI at high spatial resolution Nat Med. 3 780–782 Occurrence Handle10.1038/nm0797-780 Occurrence Handle1:CAS:528:DyaK2sXkt1KqsrY%3D Occurrence Handle9212107

    Article  CAS  PubMed  Google Scholar 

  129. Evelhoch J, Brown T, Chenevert T, et al. Consensus recommendation for acquisition of dynamic contrast-enhanced MRI data in oncology. In: Proceedings of the International Society of Magnetic Resonance in Medicine. Denver, 2000:1439

  130. J Brown D Buckley A Coulthard et al. (2000) ArticleTitleMagnetic resonance imaging screening in women at genetic risk of breast cancer: imaging and analysis protocol for the UK multicentre study. UK MRI Breast Screening Study Advisory Group Magn Reson Imaging 18 765–776 Occurrence Handle10.1016/S0730-725X(00)00167-3 Occurrence Handle1:STN:280:DC%2BD3M%2Fls1yiug%3D%3D Occurrence Handle11027869

    Article  CAS  PubMed  Google Scholar 

  131. PS Tofts AG Kermode (1991) ArticleTitleMeasurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts Magn Reson Med 17 357–367 Occurrence Handle1:STN:280:By6B1cjltFw%3D Occurrence Handle2062210

    CAS  PubMed  Google Scholar 

  132. G Brix W Semmler R Port et al. (1991) ArticleTitlePharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging J Comput Assist Tomogr 15 621–628 Occurrence Handle1:STN:280:By6B1cnltVA%3D Occurrence Handle2061479

    CAS  PubMed  Google Scholar 

  133. E Henderson BK Rutt TY Lee (1998) ArticleTitleTemporal sampling requirements for the tracer kinetics modeling of breast disease Magn Reson Imaging 16 1057–1073 Occurrence Handle10.1016/S0730-725X(98)00130-1 Occurrence Handle1:STN:280:DyaK1M%2FltlOhtw%3D%3D Occurrence Handle9839990

    Article  CAS  PubMed  Google Scholar 

  134. PS Tofts BA Berkowitz (1994) ArticleTitleMeasurement of capillary permeability from the Gd enhancement curve: a comparison of bolus and constant infusion injection methods Magn Reson Imaging 12 81–91 Occurrence Handle10.1016/0730-725X(94)92355-8 Occurrence Handle1:STN:280:ByuC38rpt1Q%3D Occurrence Handle8295511

    Article  CAS  PubMed  Google Scholar 

  135. RE Port MV Knopp U Hoffmann et al. (1999) ArticleTitleMulticompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging J Magn Reson Imaging 10 233–241 Occurrence Handle10.1002/(SICI)1522-2586(199909)10:3<233::AID-JMRI3>3.0.CO;2-M Occurrence Handle1:STN:280:DyaK1Mvjsl2jtA%3D%3D Occurrence Handle10508282

    Article  CAS  PubMed  Google Scholar 

  136. L Ludemann B Hamm C Zimmer (2000) ArticleTitlePharmacokinetic analysis of glioma compartments with dynamic Gd-DTPA–enhanced magnetic resonance imaging Magn Reson Imaging 18 1201–1214 Occurrence Handle10.1016/S0730-725X(00)00223-X Occurrence Handle1:CAS:528:DC%2BD3MXptlagsw%3D%3D Occurrence Handle11167040

    Article  CAS  PubMed  Google Scholar 

  137. TP Roberts (1997) ArticleTitlePhysiologic measurements by contrast-enhanced MR imaging: expectations and limitations J Magn Reson Imaging 7 82–90 Occurrence Handle1:STN:280:ByiC1M7msFU%3D Occurrence Handle9039597

    CAS  PubMed  Google Scholar 

  138. Taylor NJ, Lankester KJ, Stirling JJ, et al. Application of navigator techniques to breath-hold DCE-MRI studies of the liver. In: Proceedings of the International Society of Magnetic Resonance in Medicine, 11th scientific meeting. Toronto, 2003:1306

  139. Noseworthy MD, Sussman MS, Haider M, Baruchel S. Dynamic contrast enhanced liver MRI using a motion tracking algorithm. In: Proceedings of the International Society of Magnetic Resonance in Medicine. Glasgow, Scotland, 2001:2240

  140. JM Bland DG Altman (1996) ArticleTitleMeasurement error (a) BMJ 313 744 Occurrence Handle1:STN:280:BymH3MnmsFE%3D Occurrence Handle8819450

    CAS  PubMed  Google Scholar 

  141. A Jackson A Kassner XP Zhu KL Li (2001) ArticleTitleReproducibility of T2* blood volume and vascular tortuosity maps in cerebral gliomas J Magn Reson Imaging 14 510–516 Occurrence Handle10.1002/jmri.1214 Occurrence Handle1:STN:280:DC%2BD3MnpsFylsw%3D%3D Occurrence Handle11747002

    Article  CAS  PubMed  Google Scholar 

  142. SM Galbraith MA Lodge NJ Taylor et al. (2002) ArticleTitleReproducibility of dynamic contrast enhanced MRI in human muscle and tumours—comparison of quantitative and semi-quantitative analysis NMR Biomed. 15 132–142 Occurrence Handle10.1002/nbm.731 Occurrence Handle11870909

    Article  PubMed  Google Scholar 

  143. AR Padhani C Hayes S Landau MO Leach (2002) ArticleTitleReproducibility of quantitative dynamic MRI of normal human tissues NMR Biomed. 15 143–154 Occurrence Handle10.1002/nbm.732 Occurrence Handle11870910

    Article  PubMed  Google Scholar 

  144. Evelhoch J, LoRusso P, Latif Z, et al. Reproducibility of dynamic contrast-enhanced (DCE-MRI) assessment of tumor vascularity. In: American Society of Clinical Oncology 2001 annual meeting. San Francisco, 2001:399

  145. HJ Aronen IE Gazit DN Louis et al. (1994) ArticleTitleCerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings Radiology 191 41–51 Occurrence Handle1:STN:280:ByuC1c7otVc%3D Occurrence Handle8134596

    CAS  PubMed  Google Scholar 

  146. C Hayes AR Padhani MO Leach (2002) ArticleTitleAssessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging NMR Biomed. 15 154–163 Occurrence Handle10.1002/nbm.756 Occurrence Handle11870911

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The support of Cancer Research UK and the Childwick Trust, which support the work of the Clinical Magnetic Resonance Research Group at the Royal Marsden Hospital and at the Paul Strickland Scanner Centre, Mount Vernon Hospital, respectively, is gratefully acknowledged. We are grateful to Dr. Jane Taylor for assistance in the preparation of the illustrative material for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Padhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padhani, A.R., Leach, M.O. Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 30, 325–342 (2005). https://doi.org/10.1007/s00261-004-0265-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-004-0265-5

Keywords

Navigation