Skip to main content

Advertisement

Log in

Inter-heterogeneity and intra-heterogeneity of αvβ3 in non-small cell lung cancer and small cell lung cancer patients as revealed by 68Ga-RGD2 PET imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Integrin αvβ3 is the therapeutic target of the anti-angiogenic drug cilengitide. The objective of this study was to compare αvβ3 levels in non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) patients, by using the positron emission tomography (PET) tracer 68Ga-labeled dimerized-RGD (68Ga-RGD2).

Methods

Thirty-one patients with pathologically confirmed lung cancer were enrolled (21 were NSCLC and 10 were SCLC). PET/CT images were acquired using 68Ga-RGD2.18F-FDG PET/CT images were also acquired on the consecutive day as reference. The standard uptake values (SUV) and the tumor/nontarget (T/NT) values were quantitatively compared. Expression of the angiogenesis marker αvβ3 in NSCLC and SCLC lesions was analyzed by immunohistochemistry.

Results

The 18F-FDG SUVmax and the SUVmean were not significantly different between NSCLC and SCLC patients. The 68Ga-RGD2 uptake of SCLC patients was at background levels in both SUV and T/NT measurements and was significantly lower than that of NSCLC patients. The range value of 68Ga-RGD2 SUVmean was 4.5 in the NSCLC group and 2.2 in the SCLC group, while the variation coefficient was 36.2% and 39.3% in NSCLC and SCLC primary lesions, respectively. Heterogeneity between primary lesions and putative distant metastases was also observed in some NSCLC cases. Immunostaining showed that αvβ3 integrin was expressed in the cells and neovasculature of NSCLC lesions, while SCLC samples had negative expression.

Conclusions

The uptake of 68Ga-RGD2 in SCLC patients is significantly lower than that in NSCLC patients, indicating a lower αvβ3 target level for cilengitide in SCLC. Apparent intra-tumor heterogeneities of αvβ3 also exist in both NSCLC and SCLC. Such inter- and intra-heterogeneity of αvβ3 may potentially improve current applications of αvβ3-targeted therapy and diagnostic imaging in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011;378:1741–55.

    Article  PubMed  Google Scholar 

  3. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. Non-small cell lung cancer, version 6.2015. Natl Compr Canc Netw. 2015;13:515–24.

    Article  Google Scholar 

  4. Howlader N, Noone A, Krapcho M, Miller D, K. Bishop, Altekruse SF, et al. SEER Cancer Statistics Review, 1975–2013, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016.

  5. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    Article  CAS  PubMed  Google Scholar 

  6. Boger C, Kalthoff H, Goodman SL, Behrens HM, Rocken C. Integrins and their ligands are expressed in non-small cell lung cancer but not correlated with parameters of disease progression. Virchows Arch. 2014;464:69–78.

    Article  PubMed  Google Scholar 

  7. Liu Z, Jia B, Shi J, Jin X, Zhao H, Li F, et al. Tumor uptake of the RGD dimeric probe (99m)Tc-G3-2P4-RGD2 is correlated with integrin alphavbeta3 expressed on both tumor cells and neovasculature. Bioconjug Chem. 2010;21:548–55.

    Article  CAS  PubMed  Google Scholar 

  8. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 1999;18:882–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahabeleshwar GH, Feng W, Phillips DR, Byzova TV. Integrin signaling is critical for pathological angiogenesis. J Exp Med. 2006;203:2495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robinson SD, Hodivala-Dilke KM. The role of beta3-integrins in tumor angiogenesis: context is everything. Curr Opin Cell Biol. 2011;23:630–7.

    Article  CAS  PubMed  Google Scholar 

  11. Smith JW. Cilengitide Merck. Curr Opin Investig Drugs. 2003;4:741–5.

    CAS  PubMed  Google Scholar 

  12. Manegold C, Vansteenkiste J, Cardenal F, Schuette W, Woll PJ, Ulsperger E, et al. Randomized phase II study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer. Investig New Drugs. 2013;31:175–82.

    Article  CAS  Google Scholar 

  13. Vansteenkiste J, Barlesi F, Waller CF, Bennouna J, Gridelli C, Goekkurt E, et al. Cilengitide combined with cetuximab and platinum-based chemotherapy as first-line treatment in advanced non-small-cell lung cancer (NSCLC) patients: results of an open-label, randomized, controlled phase II study (CERTO). Ann Oncol. 2015;26:1734–40.

    Article  CAS  PubMed  Google Scholar 

  14. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  CAS  PubMed  Google Scholar 

  15. Roviello G, Generali D. Is there a place for bevacizumab in patients with extensive-stage small cell lung cancer? Curr Cancer Drug Targets. 2016;16:209–14.

    Article  CAS  PubMed  Google Scholar 

  16. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009;27:1227–34.

    Article  CAS  PubMed  Google Scholar 

  17. Lu X, Wang RF. A concise review of current radiopharmaceuticals in tumor angiogenesis imaging. Curr Pharm Des. 2012;18:1032–40.

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Niu G, Wu H, Chen X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin alphavbeta3. Theranostics. 2016;6:78–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo J, Guo N, Lang L, Kiesewetter DO, Xie Q, Li Q, et al. (18)F-alfatide II and (18)F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy. J Nucl Med. 2014;55:154–60.

    Article  CAS  PubMed  Google Scholar 

  20. Kang F, Wang S, Tian F, Zhao M, Zhang M, Wang Z, et al. Comparing the diagnostic potential of 68Ga-Alfatide II and 18F-FDG in differentiating between non-small cell lung cancer and tuberculosis. J Nucl Med. 2016;57:672–7.

    Article  PubMed  Google Scholar 

  21. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–95.

    PubMed  Google Scholar 

  22. Kang F, Ma W, Ma X, Shao Y, Yang W, Chen X, et al. Propranolol inhibits glucose metabolism and 18F-FDG uptake of breast cancer through posttranscriptional downregulation of hexokinase-2. J Nucl Med. 2014;55:439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng K, Liang N, Zhang J, Lang L, Zhang W, Li S, et al. 68Ga-NOTA-PRGD2 PET/CT for integrin imaging in patients with lung cancer. J Nucl Med. 2015;56:1823–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Minamimoto R, Jamali M, Barkhodari A, Mosci C, Mittra E, Shen B, et al. Biodistribution of the (1)(8)F-FPPRGD(2) PET radiopharmaceutical in cancer patients: an atlas of SUV measurements. Eur J Nucl Med Mol Imaging. 2015;42:1850–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gao S, Wu H, Li W, Zhao S, Teng X, Lu H, et al. A pilot study imaging integrin alphavbeta3 with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med Mol Imaging. 2015;42:2029–37.

    Article  CAS  PubMed  Google Scholar 

  26. Iagaru A, Mosci C, Mittra E, Zaharchuk G, Fischbein N, Harsh G, et al. Glioblastoma Multiforme recurrence: an exploratory study of (18)F FPPRGD2 PET/CT. Radiology. 2015;277:497–506.

    Article  PubMed  Google Scholar 

  27. Reardon DA, Fink KL, Mikkelsen T, Cloughesy TF, O’Neill A, Plotkin S, et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol. 2008;26:5610–7.

    Article  CAS  PubMed  Google Scholar 

  28. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1100–8.

    Article  CAS  PubMed  Google Scholar 

  29. Chinot OL. Cilengitide in glioblastoma: when did it fail? Lancet Oncol. 2014;15:1044–5.

    Article  PubMed  Google Scholar 

  30. Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med. 2009;15:392–400.

    Article  CAS  PubMed  Google Scholar 

  31. Minamimoto R, Karam A, Jamali M, Barkhodari A, Gambhir SS, Dorigo O, et al. Pilot prospective evaluation of (18)F-FPPRGD2 PET/CT in patients with cervical and ovarian cancer. Eur J Nucl Med Mol Imaging. 2016;43:1047–55.

    Article  PubMed  Google Scholar 

  32. Iagaru A, Mosci C, Shen B, Chin FT, Mittra E, Telli ML, et al. (18)F-FPPRGD2 PET/CT: pilot phase evaluation of breast cancer patients. Radiology. 2014;273:549–59.

    Article  PubMed  Google Scholar 

  33. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005;2:e70.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, et al. Phase I trial of the positron-emitting Arg-Gly-asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med. 2008;49:879–86.

    Article  PubMed  Google Scholar 

  35. Bach-Gansmo T, Danielsson R, Saracco A, Wilczek B, Bogsrud TV, Fangberget A, et al. Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate 99mTc-NC100692. J Nucl Med. 2006;47:1434–9.

    CAS  PubMed  Google Scholar 

  36. Zhu Z, Miao W, Li Q, Dai H, Ma Q, Wang F, et al. 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med. 2012;53:716–22.

    Article  PubMed  Google Scholar 

  37. Kim JH, Lee JS, Kang KW, Lee H-Y, Han S-W, Kim T-Y, et al. Whole-body distribution and radiation dosimetry of 68Ga-NOTA-RGD, a positron emission tomography agent for angiogenesis imaging. Cancer Biother Radiophar. 2012;27:65–71.

    Article  CAS  Google Scholar 

  38. Mittra ES, Goris ML, Iagaru AH, Kardan A, Burton L, Berganos R, et al. Pilot pharmacokinetic and dosimetric studies of 18F-FPPRGD2: a PET radiopharmaceutical agent for imaging αvβ3 integrin levels. Radiology. 2011;260:182–91.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Xiaoyuan Chen, Prof. Wei Zhang, Prof. Li Fan and Prof. Jing Ye for their generous support and Fan Guo, Chao Wang, Xiaowei Ma, Zhiyong Quan, Guiyu Li, Jin Zeng, Zhiping Yang, Xiaohu Zhao and Mei Yang for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Yang or Jing Wang.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81401442, 81230033, 81227901, 81371594, 81572252), the Post-doctoral Science Foundation of China (Grant No. 2015M582802) and the National Key Research and Development Program of China (Grant No. 2016YFC0103804).

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 1469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, F., Wang, Z., Li, G. et al. Inter-heterogeneity and intra-heterogeneity of αvβ3 in non-small cell lung cancer and small cell lung cancer patients as revealed by 68Ga-RGD2 PET imaging. Eur J Nucl Med Mol Imaging 44, 1520–1528 (2017). https://doi.org/10.1007/s00259-017-3696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3696-2

Keywords

Navigation