Skip to main content

Advertisement

Log in

Reference region selection and the association between the rate of amyloid accumulation over time and the baseline amyloid burden

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Relative quantitative analysis of amyloid plaque burden in Alzheimer’s disease (AD) patients can be reported as standardized uptake value ratio (SUVR) from positron emission tomography (PET). Here, the SUVR is the ratio of the mean amyloid radioligand retention in a composite (COMP) neocortical volume of interest (VOI) to that in a reference VOI, such as the cerebellum, brainstem (BST)/pons, or white matter (WM). Some longitudinal PET investigations show that the rate of amyloid accumulation to follow-up has an inverted U relationship with baseline amyloid SUVR relative to cerebellar or brainstem/pons reference VOIs. The corresponding association with SUVR relative to WM is unknown. To test the possible benefits of WM normalization, we analyzed [18F]-AV45 PET data from 404 subjects in the AD Neuroimaging Initiative (ADNI) database at baseline and 2-year follow-up (144 cognitively normal controls, 225 patients with mild cognitive impairment, and 35 AD patients). Reference regions included subcortical WM as well as conventional cerebellar gray matter (CBL), and BST. We tested associations between each subject’s inter-session change (∆) of SUVR and their baseline SUVR by applying linear, logarithmic, and quadratic regression analyses. Unscaled standardized uptake values (SUVs) were correlated between VOIs at baseline and follow-up, and within VOIs in the longitudinal run. The association between ∆SUVR and baseline SUVR relative to WM reference was best described by an inverted U-shaped function. Correlation analyses demonstrated a high regional and temporal correlation between COMP and WM VOI SUVs. For WM normalization, we confirm that the rate of amyloid accumulation over time follows an inverted U-shaped function of baseline amyloid burden. Reference region selection, however, has substantial effects on SUVR results. This reflects the extent of covariance between SUVs in the COMP VOI and those in the various reference VOIs. We speculate that PET labeling of amyloid deposition within target regions is partially confounded by effects of longitudinal changes of cerebral blood flow (CBF) on tracer delivery. Indeed, CBF may be the leading factor influencing longitudinal SUV changes. We suggest that SUVR relative to WM may be more robust to changes in CBF, and thus fitter for sensitive detection of amyloid accumulation in intervention studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;131:1630–45. doi:10.1093/brain/awn016.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Camus V, Payoux P, Barre L, Desgranges B, Voisin T, Tauber C, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging. 2012;39:621–31. doi:10.1007/s00259-011-2021-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Joshi AD, Pontecorvo MJ, Clark CM, Carpenter AP, Jennings DL, Sadowsky CH, et al. Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects. J Nucl Med. 2012;53:378–84. doi:10.2967/jnumed.111.090340.

    Article  CAS  PubMed  Google Scholar 

  4. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med. 2010;51:913–20. doi:10.2967/jnumed.109.069088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46. doi:10.1016/S1474-4422(07)70178-3.

    Article  PubMed  Google Scholar 

  6. Jack Jr CR, Wiste HJ, Lesnick TG, Weigand SD, Knopman DS, Vemuri P, et al. Brain beta-amyloid load approaches a plateau. Neurology. 2013;80:890–6. doi:10.1212/WNL.0b013e3182840bbe.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357–67. doi:10.1016/S1474-4422(13)70044-9.

    Article  CAS  PubMed  Google Scholar 

  8. Fleisher AS, Chen K, Liu X, Ayutyanont N, Roontiva A, Thiyyagura P, et al. Apolipoprotein E epsilon4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging. 2013;34:1–12. doi:10.1016/j.neurobiolaging.2012.04.017.

    Article  CAS  PubMed  Google Scholar 

  9. Doraiswamy PM, Sperling RA, Coleman RE, Johnson KA, Reiman EM, Davis MD, et al. Amyloid-beta assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study. Neurology. 2012;79:1636–44. doi:10.1212/WNL.0b013e3182661f74.

    Article  CAS  PubMed  Google Scholar 

  10. Thal DR, Beach TG, Zanette M, Heurling K, Chakrabarty A, Ismail A. [(18)F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer’s disease: specific detection of advanced phases of amyloid-beta pathology. Alzheimers Dement. 2015;11:975–85. doi:10.1016/j.jalz.2015.05.018.

    Article  PubMed  Google Scholar 

  11. Barthel H, Gertz HJ, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35. doi:10.1016/S1474-4422(11)70077-1.

    Article  CAS  PubMed  Google Scholar 

  12. Villain N, Chetelat G, Grassiot B, Bourgeat P, Jones G, Ellis KA, et al. Regional dynamics of amyloid-beta deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB-PET longitudinal study. Brain. 2012;135:2126–39. doi:10.1093/brain/aws125.

    Article  PubMed  Google Scholar 

  13. Landau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of longitudinal beta-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J Nucl Med. 2015;56:567–74. doi:10.2967/jnumed.114.148981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen K, Roontiva A, Thiyyagura P, Lee W, Liu X, Ayutyanont N, et al. Improved power for characterizing longitudinal amyloid-beta PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015;56:560–6. doi:10.2967/jnumed.114.149732.

    Article  CAS  PubMed  Google Scholar 

  15. Brendel M, Hogenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. NeuroImage. 2015;108:450–9. doi:10.1016/j.neuroimage.2014.11.055.

    Article  PubMed  Google Scholar 

  16. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19:224–47. doi:10.1002/hbm.10123.

    Article  PubMed  Google Scholar 

  17. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, editors Second International Symposium on Information Theory; Budapest Akademiai Kiado. 1973:pp. 267–81.

  18. Cumming P, Xiong G, la Fougere C, Rominger A, Bartenstein P, Buchholz HG, et al. Surrogate markers for cerebral blood flow correlate with [(1)(8)F]-fallypride binding potential at dopamine D(2/3) receptors in human striatum. Synapse. 2013;67:199–203. doi:10.1002/syn.21630.

    Article  CAS  PubMed  Google Scholar 

  19. Chen YJ, Rosario BL, Mowrey W, Laymon CM, Lu X, Lopez OL, et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J Nucl Med. 2015;56:1199–205. doi:10.2967/jnumed.114.152405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sojkova J, Beason-Held L, Zhou Y, An Y, Kraut MA, Ye W, et al. Longitudinal cerebral blood flow and amyloid deposition: an emerging pattern? J Nucl Med. 2008;49:1465–71. doi:10.2967/jnumed.108.051946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alegret M, Cuberas-Borros G, Vinyes-Junque G, Espinosa A, Valero S, Hernandez I, et al. A two-year follow-up of cognitive deficits and brain perfusion in mild cognitive impairment and mild Alzheimer’s disease. J Alzheimer’s Dis : JAD. 2012;30:109–20. doi:10.3233/JAD-2012-111850.

    PubMed  PubMed Central  Google Scholar 

  22. Nishimura T, Hashikawa K, Fukuyama H, Kubota T, Kitamura S, Matsuda H, et al. Decreased cerebral blood flow and prognosis of Alzheimer’s disease: a multicenter HMPAO-SPECT study. Ann Nucl Med. 2007;21:15–23.

    Article  PubMed  Google Scholar 

  23. van Berckel BN, Ossenkoppele R, Tolboom N, Yaqub M, Foster-Dingley JC, Windhorst AD, et al. Longitudinal amyloid imaging using 11C-PiB: methodologic considerations. J Nucl Med. 2013;54:1570–6. doi:10.2967/jnumed.112.113654.

    Article  PubMed  Google Scholar 

  24. Rullmann M, Dukart J, Hoffmann KT, Luthardt J, Tiepolt S, Patt M, et al. Partial-volume effect correction improves quantitative analysis of 18F-Florbetaben beta-Amyloid PET Scans. J Nucl Med. 2016;57:198–203. doi:10.2967/jnumed.115.161893.

    Article  CAS  PubMed  Google Scholar 

  25. Nemmi F, Saint-Aubert L, Adel D, Salabert AS, Pariente J, Barbeau EJ, et al. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer’s disease patients and healthy subjects. Eur J Nucl Med Mol Imaging. 2014;41:1408–18. doi:10.1007/s00259-014-2728-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Language editing was provided by Inglewood Biomedical Editing. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI; National Institutes of Health grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Axel Rominger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures described in the study were approved by the institutional review boards of each participating institution and were in accordance with the 1964 Helsinki Declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 29.4 kb)

ESM 2

(GIF 163 kb)

High resolution image (TIFF 1521 kb)

ESM 3

(GIF 161 kb)

High resolution image (TIFF 1521 kb)

ESM 4

(GIF 163 kb)

High resolution image (TIFF 1521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blautzik, J., Brendel, M., Sauerbeck, J. et al. Reference region selection and the association between the rate of amyloid accumulation over time and the baseline amyloid burden. Eur J Nucl Med Mol Imaging 44, 1364–1374 (2017). https://doi.org/10.1007/s00259-017-3666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3666-8

Keywords

Navigation