Skip to main content

Advertisement

Log in

Diagnostic accuracy of 18F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To compare the diagnostic accuracy of prone 18F-FDG PET/CT with that of contrast-enhanced MRI (CE-MRI) at 3 T in suspicious breast lesions. To evaluate the influence of tumour size on diagnostic accuracy and the use of maximum standardized uptake value (SUVMAX) thresholds to differentiate malignant from benign breast lesions.

Methods

A total of 172 consecutive patients with an imaging abnormality were included in this IRB-approved prospective study. All patients underwent 18F-FDG PET/CT and CE-MRI of the breast at 3 T in the prone position. Two reader teams independently evaluated the likelihood of malignancy as determined by 18F-FDG PET/CT and CE-MRI independently. 18F-FDG PET/CT data were qualitatively evaluated by visual interpretation. Quantitative assessment was performed by calculation of SUVMAX. Sensitivity, specificity, diagnostic accuracy, area under the curve and interreader agreement were calculated for all lesions and for lesions <10 mm. Histopathology was used as the standard of reference.

Results

There were 132 malignant and 40 benign lesions; 23 lesions (13.4 %) were <10 mm. Both 18F-FDG PET/CT and CE-MRI achieved an overall diagnostic accuracy of 93 %. There were no significant differences in sensitivity (p = 0.125), specificity (p = 0.344) or diagnostic accuracy (p = 1). For lesions <10 mm, diagnostic accuracy deteriorated to 91 % with both 18F-FDG PET/CT and CE-MRI. Although no significant difference was found for lesions <10 mm, CE-MRI at 3 T seemed to be more sensitive but less specific than 18F-FDG PET/CT. Interreader agreement was excellent (κ = 0.85 and κ = 0.92). SUVMAX threshold was not helpful in differentiating benign from malignant lesions.

Conclusion

18F-FDG PET/CT and CE-MRI at 3 T showed equal diagnostic accuracies in breast cancer diagnosis. For lesions <10 mm, diagnostic accuracy deteriorated, but was equal for 18F-FDG PET/CT and CE-MRI at 3 T. For lesions <10 mm, CE-MRI at 3 T seemed to be more sensitive but less specific than 18F-FDG PET/CT. Quantitative assessment using an SUVMAX threshold for differentiating benign from malignant lesions was not helpful in breast cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sardanelli F, Boetes C, Borisch B, Decker T, Federico M, Gilbert FJ, et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer. 2010;46:1296–316. doi:10.1016/j.ejca.2010.02.015.

    Article  PubMed  Google Scholar 

  2. Pinker K, Bogner W, Baltzer P, Gruber S, Bickel H, Brueck B, et al. Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Invest Radiol. 2014;49:421–30. doi:10.1097/RLI.0000000000000029.

    Article  CAS  PubMed  Google Scholar 

  3. Pinker K, Bogner W, Baltzer P, Karanikas G, Magometschnigg H, Brader P, et al. Improved differentiation of benign and malignant breast tumors with multiparametric 18fluorodeoxyglucose positron emission tomography magnetic resonance imaging: a feasibility study. Clin Cancer Res. 2014;20:3540–9. doi:10.1158/1078-0432.CCR-13-2810.

    Article  CAS  PubMed  Google Scholar 

  4. Pinker K, Grabner G, Bogner W, Gruber S, Szomolanyi P, Trattnig S, et al. A combined high temporal and high spatial resolution 3 Tesla MR imaging protocol for the assessment of breast lesions: initial results. Invest Radiol. 2009;44:553–8. doi:10.1097/RLI.0b013e3181b4c127.

    Article  PubMed  Google Scholar 

  5. Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J. Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology. 2006;239:666–76.

    Article  PubMed  Google Scholar 

  6. Butler RS, Chen C, Vashi R, Hooley RJ, Philpotts LE. 3.0 Tesla vs 1.5 Tesla breast magnetic resonance imaging in newly diagnosed breast cancer patients. World J Radiol. 2013;5:285–94. doi:10.4329/wjr.v5.i8.285.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Koolen BB, Vogel WV, Vrancken Peeters MJ, Loo CE, Rutgers EJ, Valdes Olmos RA. Molecular imaging in breast cancer: from whole-body PET/CT to dedicated breast PET. J Oncol. 2012;2012:438647. doi:10.1155/2012/438647.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Moy L, Noz ME, Maguire Jr GQ, Ponzo F, Deans AE, Murphy-Walcott AD, et al. Prone mammoPET acquisition improves the ability to fuse MRI and PET breast scans. Clin Nucl Med. 2007;32:194–8. doi:10.1097/01.rlu.0000255055.10177.80.

    Article  PubMed  Google Scholar 

  9. Yutani K, Tatsumi M, Uehara T, Nishimura T. Effect of patients’ being prone during FDG PET for the diagnosis of breast cancer. AJR Am J Roentgenol. 1999;173:1337–9.

    Article  CAS  PubMed  Google Scholar 

  10. Avril N, Adler LP. F-18 fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. Radiol Clin N Am. 2007;45:645–57. doi:10.1016/j.rcl.2007.05.004.

    Article  PubMed  Google Scholar 

  11. Koolen BB, van der Leij F, Vogel WV, Rutgers EJ, Vrancken Peeters MJ, Elkhuizen PH, et al. Accuracy of 18F-FDG PET/CT for primary tumor visualization and staging in T1 breast cancer. Acta Oncol. 2014;53:50–7. doi:10.3109/0284186X.2013.783714.

    Article  CAS  PubMed  Google Scholar 

  12. Expert Panel on MR Safety, Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley Jr WG, et al. ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging. 2013;37:501–30. doi:10.1002/jmri.24011.

    Article  Google Scholar 

  13. Knausl B, Hirtl A, Dobrozemsky G, Bergmann H, Kletter K, Dudczak R, et al. PET based volume segmentation with emphasis on the iterative TrueX algorithm. Z Med Phys. 2012;22:29–39. doi:10.1016/j.zemedi.2010.12.003.

    Article  PubMed  Google Scholar 

  14. Rapisarda E, Bettinardi V, Thielemans K, Gilardi MC. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol. 2010;55:4131–51. doi:10.1088/0031-9155/55/14/012.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A. Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat. 2006;98:267–74. doi:10.1007/s10549-006-9159-2.

    Article  PubMed  Google Scholar 

  16. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A. Standardized uptake values of normal breast tissue with 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography: variations with age, breast density, and menopausal status. Mol Imaging Biol. 2006;8:355–62. doi:10.1007/s11307-006-0060-5.

    Article  PubMed  Google Scholar 

  17. Sickles EA, D’Orsi CJ. ACR BI-RADS® follow-up and outcome monitoring. In: D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS® atlas, breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013.

    Google Scholar 

  18. Kuhl CK, Schild HH, Morakkabati N. Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology. 2005;236:789–800.

    Article  PubMed  Google Scholar 

  19. Pinker K, Bickel H, Helbich TH, Gruber S, Dubsky P, Pluschnig U, et al. Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the “Breast imaging reporting and data system” for multiparametric 3-T imaging of breast lesions. Eur Radiol. 2013;23:1791–802. doi:10.1007/s00330-013-2771-8.

    Article  CAS  PubMed  Google Scholar 

  20. Krishnamurthy S, Bevers T, Kuerer H, Yang WT. Multidisciplinary considerations in the management of high-risk breast lesions. AJR Am J Roentgenol. 2012;198:W132–40. doi:10.2214/AJR.11.7799.

    Article  PubMed  Google Scholar 

  21. Goerres GW, Michel SC, Fehr MK, Kaim AH, Steinert HC, Seifert B, et al. Follow-up of women with breast cancer: comparison between MRI and FDG PET. Eur Radiol. 2003;13:1635–44. doi:10.1007/s00330-002-1720-8.

    Article  PubMed  Google Scholar 

  22. Imbriaco M, Caprio MG, Limite G, Pace L, De Falco T, Capuano E, et al. Dual-time-point 18F-FDG PET/CT versus dynamic breast MRI of suspicious breast lesions. AJR Am J Roentgenol. 2008;191:1323–30. doi:10.2214/AJR.07.3439.

    Article  PubMed  Google Scholar 

  23. Caprio MG, Cangiano A, Imbriaco M, Soscia F, Di Martino G, Farina A, et al. Dual-time-point [18F]-FDG PET/CT in the diagnostic evaluation of suspicious breast lesions. Radiol Med. 2010;115:215–24. doi:10.1007/s11547-009-0491-6.

    Article  CAS  PubMed  Google Scholar 

  24. Heusner TA, Freudenberg LS, Kuehl H, Hauth EA, Veit-Haibach P, Forsting M, et al. Whole-body PET/CT-mammography for staging breast cancer: initial results. Br J Radiol. 2008;81:743–8. doi:10.1259/bjr/69647413.

    Article  PubMed  Google Scholar 

  25. Vidal-Sicart S, Aukema TS, Vogel WV, Hoefnagel CA, Valdes-Olmos RA. Added value of prone position technique for PET-TAC in breast cancer patients. Rev Esp Med Nucl. 2010;29:230–5. doi:10.1016/j.remn.2010.05.002.

    Article  CAS  PubMed  Google Scholar 

  26. Choi YJ, Shin YD, Kang YH, Lee MS, Lee MK, Cho BS, et al. The effects of preoperative (18)F-FDG PET/CT in breast cancer patients in comparison to the conventional imaging study. J Breast Cancer. 2012;15:441–8. doi:10.4048/jbc.2012.15.4.441.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mavi A, Urhan M, Yu JQ, Zhuang H, Houseni M, Cermik TF, et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med. 2006;47:1440–6.

    PubMed  Google Scholar 

  28. Eubank WB, Mankoff DA. Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med. 2005;35:84–99. doi:10.1053/j.semnuclmed.2004.11.001.

    Article  PubMed  Google Scholar 

  29. Avril N, Propper D. Functional PET imaging in cancer drug development. Future Oncol. 2007;3:215–28. doi:10.2217/14796694.3.2.215.

    Article  CAS  PubMed  Google Scholar 

  30. Ei Khouli RH, Jacobs MA, Mezban SD, Huang P, Kamel IR, Macura KJ, et al. Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology. 2010;256:64–73. doi:10.1148/radiol.10091367.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD. Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol. 2009;193:1716–22. doi:10.2214/AJR.08.2139.

    Article  PubMed  Google Scholar 

  32. Baltzer PA, Benndorf M, Dietzel M, Gajda M, Runnebaum IB, Kaiser WA. False-positive findings at contrast-enhanced breast MRI: a BI-RADS descriptor study. AJR Am J Roentgenol. 2010;194:1658–63. doi:10.2214/AJR.09.3486.

    Article  PubMed  Google Scholar 

  33. Lehman CD. Magnetic resonance imaging in the evaluation of ductal carcinoma in situ. J Natl Cancer Inst Monogr. 2010;2010:150–1. doi:10.1093/jncimonographs/lgq030.

    Article  PubMed  Google Scholar 

  34. Mann RM, Loo CE, Wobbes T, Bult P, Barentsz JO, Gilhuijs KG, et al. The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat. 2010;119:415–22. doi:10.1007/s10549-009-0616-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Conflicts of interest

None.

Grants

Funding was provided by the Austrian Nationalbank ‘Jubiläumsfond’ Project Nr. 13652 and seed grants from Novomed, Austria, Medicor Austria and Guerbet, France.

Ethical approval

All human and animal studies were approved by the appropriate ethics committee and were, therefore, performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Written, informed consent was obtained from all patients before the examinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Helbich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magometschnigg, H.F., Baltzer, P.A., Fueger, B. et al. Diagnostic accuracy of 18F-FDG PET/CT compared with that of contrast-enhanced MRI of the breast at 3 T. Eur J Nucl Med Mol Imaging 42, 1656–1665 (2015). https://doi.org/10.1007/s00259-015-3099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3099-1

Keywords

Navigation