Skip to main content

Advertisement

Log in

18F-FLT PET/CT as an imaging tool for early prediction of pathological response in patients with locally advanced breast cancer treated with neoadjuvant chemotherapy: a pilot study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We evaluated whether 18F-3′-deoxy-3′-fluorothymidine positron emission tomography (FLT PET) can predict the final postoperative histopathological response in primary breast cancer after the first cycle of neoadjuvant chemotherapy (NCT).

Methods

In this prospective cohort study of 15 patients with locally advanced operable breast cancer, FLT PET evaluations were performed before NCT, after the first cycle of NCT, and at the end of NCT. All patients subsequently underwent surgery. Variables from FLT PET examinations were correlated with postoperative histopathological results.

Results

At baseline, median of maximum standardized uptake values (SUVmax) in the groups showing a complete pathological response (pCR) + residual cancer burden (RCB) I, RCB II or RCB III did not differ significantly for the primary tumour (5.0 vs. 2.9 vs. 8.9, p = 0.293) or for axillary nodes (7.9 vs. 1.6 vs. 7.0, p = 0.363), whereas the Spearman correlation between SUVmax and Ki67 proliferation rate index was significant (r = 0.69, p < 0.001). Analysis of the relative percentage change of SUVmaxin the primary tumour (∆SUVTmax(t 1)) and axillary nodes (∆SUVNmax(t 1)) after the first NCT cycle showed that the power of ∆SUVTmax(t 1) to predict pCR + RCB I responses (AUC = 0.91, p < 0.001) was statistically significant, whereas ∆SUVNmax(t 1) had a moderate ability (AUC = 0.77, p = 0.119) to separate subjects with ΔSUVTmax(t 1) > −52.9 % into two groups: RCB III patients and a heterogeneous group that included RCB I and RCB II patients. A predictive score μ based on ΔSUVTmax(t 1) and ΔSUVNmax(t 1) parameters is proposed.

Conclusion

The preliminary findings of the present study suggest the potential utility of FLT PET scans for early monitoring of response to NCT and to formulate a therapeutic strategy consistent with the estimated efficacy of NCT. However, these results in a small patient population need to be validated in a larger independent cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fisher B, Brown A, Mamounas E, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol. 1997;15:2483–93.

    CAS  PubMed  Google Scholar 

  2. Bonadonna G, Valagussa P, Brambilla C, et al. Primary chemotherapy in operable breast cancer: eight-year experience at the Milan Cancer Institute. J Clin Oncol. 1998;16:93–100.

    CAS  PubMed  Google Scholar 

  3. von Minckwitz G, Raab G, Caputo A, et al. Doxorubicin with cyclophosphamide followed by docetaxel every 21 days compared with doxorubicin and docetaxel every 14 days as preoperative treatment in operable breast cancer: the GEPARDUO study of the German Breast Group. J Clin Oncol. 2005;23:2676–85.

    Article  Google Scholar 

  4. Gianni G, Baselga J, Eiermann W, et al. Feasibility and tolerability of sequential doxorubicin/paclitaxel followed by cyclophosphamide, methotrexate, and fluorouracil and its effects on tumor response as preoperative therapy. Clin Cancer Res. 2005;11:8715–21.

    Article  CAS  PubMed  Google Scholar 

  5. von Minckwitz G, Untch M, Blohmer J, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30:1796–804.

    Article  Google Scholar 

  6. Esserman LJ, Berry DA, DeMichele A, et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL-CALGB 150007/150012, ACRIN 6657. J Clin Oncol. 2012;30:3242–9.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sataloff DM, Mason BA, Prestipino AJ, Seinige UL, Lieber CP, Baloch Z. Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome. J Am Coll Surg. 1995;180:297–306.

    CAS  PubMed  Google Scholar 

  8. Symmans WF, Peintinger F, Hatzis C, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25:4414–22.

    Article  PubMed  Google Scholar 

  9. Kaufmann M, Hortobagyi GN, Goldhirsch A, et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol. 2006;24:1940–9.

    Article  PubMed  Google Scholar 

  10. Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26:778–85.

    Article  PubMed  Google Scholar 

  11. Kaufmann M, von Minckwitz G, Mamounas EP, et al. Recommendations from an International Consensus Conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol. 2012;19:1508–16.

    Article  PubMed  Google Scholar 

  12. Corben AD, Abi-Raad R, Popa I, et al. Pathologic response and long-term follow-up in breast cancer patients treated with neoadjuvant chemotherapy. A comparison between classifications and their practical application. Arch Pathol Lab Med. 2013;137:1074–82.

    Article  PubMed  Google Scholar 

  13. Schott AF, Roubidoux MA, Helvie MA, et al. Clinical and radiologic assessments to predict breast cancer pathologic complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat. 2005;92:231–8.

    Article  CAS  PubMed  Google Scholar 

  14. O’Flynn EA, Desousa NM. Functional magnetic resonance: biomarkers of response in breast cancer. Breast Cancer Res. 2011;13:204–40.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Le-Petross HC, Hylton N. Role of breast MR imaging in neoadjuvant chemotherapy. Magn Reson Imaging Clin N Am. 2010;18:249–58.

    Article  PubMed  Google Scholar 

  16. Li X, Abramson RG, Arlinghaus LR, et al. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Invest Radiol. 2014. doi:10.1097/RLI.0000000000000100

  17. Jacobs MA, Ouwerkerk R, Wolff AC, et al. Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer. Breast Cancer Res Treat. 2011;128:119–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Manton DJ, Chaturvedi A, Hubbard A, et al. Neoadjuvant chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy. Br J Cancer. 2006;94:427–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Meisamy S, Bolan PJ, Baker EH, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo 1H MR spectroscopy – a pilot study at 4 T. Radiology. 2004;233:424–31.

    Article  PubMed  Google Scholar 

  20. Cochet A, Generali D, Fox SB, Ferrozzi F, Hicks RJ. Positron emission tomography and neoadjuvant therapy of breast cancer. J Natl Cancer Inst Monogr. 2011;43:111–5.

    Article  CAS  Google Scholar 

  21. Barriolo-Riedinger A, Touzery C, Riedinger JM, et al. [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2007;34:1915–24.

    Article  Google Scholar 

  22. Duch J, Fuster D, Munoz M, et al. 18F-FDG PET/CT for early prediction of response to neoadjuvant chemotherapy in breast cancer. Eur J Nucl Med Mol Imaging. 2009;36:1551–7.

    Article  CAS  PubMed  Google Scholar 

  23. Groheux D, Giacchetti S, Hatt M, et al. HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. Br J Cancer. 2013;109:1157–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Groheux D, Hindie E, Giacchetti S, et al. Early assessment with 18F-fluorodeoxyglucose positron emission tomography/computed tomography can help predict the outcome of neoadjuvant chemotherapy in triple negative breast cancer. Eur J Cancer. 2014;50:1864–71.

    Article  PubMed  Google Scholar 

  25. Koolen BB, Pengel KE, Wesseling J, et al. FDG PET/CT during neoadjuvant chemotherapy may predict response in ER-positive/HER2-negative and triple negative, but not in HER2-positive breast cancer. Breast. 2013;22:691–7.

    Article  PubMed  Google Scholar 

  26. Humbert O, Berroilo-Riedinger A, Riedinger JM, et al. Changes in 18F-FDG tumor metabolism after a first course of neoadjuvant chemotherapy in breast cancer: influence of tumor subtypes. Ann Oncol. 2012;23:2572–7.

    Article  CAS  PubMed  Google Scholar 

  27. Koolen BB, Pengel KE, Wesseling J, et al. Sequential 18F-FDG PET/CT for early prediction of complete pathological response in breast and axilla during neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2014;41:32–40.

    Article  CAS  PubMed  Google Scholar 

  28. Gebhart G, Gamez C, Holmes E, et al. 18F-FDG PET/CT for early prediction of response of neoadjuvant lapatinib, trastuzumab, and their combination in HER2-positive breast cancer: results from Neo-ALTTO. J Nucl Med. 2013;54:1862–8.

    Article  CAS  PubMed  Google Scholar 

  29. Andrade WP, Lima ENP, Osorio CABT, et al. Can FDG-PET/CT predict early response to neoadjuvant chemotherapy in breast cancer? Eur J Surg Oncol. 2013;39:1358–63.

    Article  CAS  PubMed  Google Scholar 

  30. Salskov A, Tammisetti VS, Grierson J, Vesselle H. FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-18F-fluorothymidine. Semin Nucl Med. 2007;37:429–39.

    Article  PubMed  Google Scholar 

  31. Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.

    CAS  PubMed  Google Scholar 

  32. Been LB, Suurmeijer AJ, Cobben DCP, Elsinga PH, de Vries J, et al. [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging. 2004;31:1659–72.

    Article  PubMed  Google Scholar 

  33. Pio BS, Park CK, Pietras R, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol. 2006;8:36–42.

    Article  PubMed  Google Scholar 

  34. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-18F-fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34:1339–47.

    Article  PubMed  Google Scholar 

  35. Contractor KB, Kenny LM, Stebbing J, et al. [18F]-3′deoxy-3′-fluorothymidine positron emission tomography and breast cancer response to docetaxel. Clin Cancer Res. 2011;17:7664–72.

    Article  CAS  PubMed  Google Scholar 

  36. Woolf DK, Beresford M, Li SP, et al. Evaluation of FLT-PET-CT as imaging biomarker of proliferation in primary breast cancer. Br J Cancer. 2014;110:2847–54.

    Article  CAS  PubMed  Google Scholar 

  37. Pascali C, Bogni A, Fugazza L, et al. Simple preparation and purification of ethanol-free solutions of 3'-deoxy-3'-[18F]fluorothymidine by means of disposable solid-phase extraction cartridges. Nucl Med Biol. 2012;39:540–50.

    Article  CAS  PubMed  Google Scholar 

  38. Smyczek-Gargya B, Fersis N, Dittmann H, et al. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med. 2004;31:720–4.

    Article  Google Scholar 

  39. The University of Texas MD Anderson Cancer Center. Residual cancer burden calculator. http://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3. Accessed 29 Jan 2015.

  40. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.

    Article  CAS  PubMed  Google Scholar 

  41. Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–23.

  42. Farwell MD, Pryma DA, Mankoff DA. PET/CT imaging in cancer: current applications and future directions. Cancer. 2014;120:3433–45.

    Article  CAS  PubMed  Google Scholar 

  43. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med. 2003;44:2027–32.

    CAS  PubMed  Google Scholar 

  44. Kenny LM, Vigushin DM, Al-Nahhas A, et al. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by 18F-fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res. 2005;65:10104–12.

    Article  CAS  PubMed  Google Scholar 

  45. Buck AK, Bommer M, Stilgenbauer S, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66:11055–61.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto Y, Nishiyama Y, Ishikawa S, et al. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunochemistry in non-small cell lung cancer. Eur J Med Mol Imaging. 2007;34:1610–6.

    Article  CAS  Google Scholar 

  47. Chalkidou A, Landau DB, Odell EW, et al. Correlation between Ki-67 immunohistochemistry and 18F-Fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2012;48:3499–513.

    Article  CAS  PubMed  Google Scholar 

  48. Dittmann H, Dohmen BM, Paulsen F, et al. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging. 2003;30:1407–12.

    Article  CAS  PubMed  Google Scholar 

  49. Buck AK, Halter G, Schirrmeister H, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44:1426–31.

    CAS  PubMed  Google Scholar 

  50. Hoshikawa H, Nishiyama Y, Kishino T, et al. Comparison of FLT-PET and FDG-PET for visualization of head and neck squamous cell cancers. Mol Imaging Biol. 2011;13:172–7.

    Article  PubMed  Google Scholar 

  51. Kameyama R, Yamamoto Y, Izuishi K, et al. Detection of gastric cancer using 18F-FLT PET: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2009;36:382–8.

    Article  PubMed  Google Scholar 

  52. Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.

    CAS  PubMed  Google Scholar 

  53. van Westreenen HL, Cobben DCP, Jager PL, et al. Comparison of 18F-FLT PET and 18F-FDG in esophageal cancer. J Nucl Med. 2005;46:400–4.

    PubMed  Google Scholar 

  54. van Waarde A, Cobben DC, Suurmeijer AJ, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumour from inflammation in a rodent model. J Nucl Med. 2004;45:695–700.

    PubMed  Google Scholar 

  55. Kenny LM, Al-Nahhas A, Aboagye EO. Novel PET biomarkers for breast cancer imaging. Nucl Med Commun. 2011;32:333–5.

    Article  PubMed  Google Scholar 

  56. Lubberink M, Direcks W, Emmering J, et al. Validity of simplified 3′-deoxy-3′-[18F]fluorothymidine uptake measures for monitoring response to chemotherapy in locally advanced breast cancer. Mol Imaging Biol. 2012;14:777–82.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MRI. 2010;31:496–505.

    Article  Google Scholar 

  58. Eckel F, Herrmann K, Schmidt S, et al. Imaging of proliferation in hepatocellular carcinoma with the in vivo marker 18F-fluorothymidine. J Nucl Med. 2009;50:1441–7.

    Article  CAS  PubMed  Google Scholar 

  59. Buck AK, Schirrmeister H, Hetzel M, et al. 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res. 2002;62:3331–4.

    CAS  PubMed  Google Scholar 

  60. Vesselle H, Grierson J, Muzi M, et al. In vivo validation of 3-deoxy-3-18F-fluorothymidine (18F-FLT) as a proliferation imaging tracer in humans: correlation of 18F-FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res. 2002;8:3315–23.

    CAS  PubMed  Google Scholar 

  61. Wang Y, Zhang C, Liu J, Huang G. Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast cancer? A meta-analysis. Breast Cancer Res Treat. 2012;131:357–69.

    Article  CAS  PubMed  Google Scholar 

  62. Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–72.

    Article  PubMed  Google Scholar 

  63. Provenzano E, Vallier A-L, Champ R, et al. A central review of histopathology reports after breast cancer neoadjuvant chemotherapy in the neo-tango trial. Br J Cancer. 2013;108:866–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Ogston KN, Miller ID, Payne S, et al. A new histologic grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 2003;12:320–7.

    Article  PubMed  Google Scholar 

  65. Chollet P, Abrial C, Durando X, et al. A new prognostic classification after primary chemotherapy for breast cancer: residual disease in breast and nodes (RDBN). Cancer J. 2008;14:128–32.

    Article  PubMed  Google Scholar 

  66. Marchiò C, Sapino A. The pathologic complete response open question in primary therapy. J Natl Cancer Inst Monogr. 2011;43:86–90.

    Article  Google Scholar 

  67. Kim S, Kim DH, Jung WH, et al. Metabolic phenotypes in triple negative breast cancer. Tumor Biol. 2013;34:1699–712.

    Article  CAS  Google Scholar 

  68. Kim SK, Jung WH, Koo JS. Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS One. 2014;9:e101004.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Kajari K, Tokes T, Dank M, et al. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer. Nucl Med Commun. 2015;36:28–37.

    Article  Google Scholar 

  70. Vicente G, Castrejon AS, Leon MA, et al. Molecular subtypes of breast cancer: metabolic correlation with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:1304–11.

    Article  Google Scholar 

  71. Wu L, Hu J, Gu H, et al. Can diffusion weighted MR imaging and contrast-enhanced MR imaging precisely evaluate and predict pathological response to neoadjuvant chemotherapy in patients with breast cancer? Breast Cancer Res Treat. 2012;135:17–28.

    Article  CAS  PubMed  Google Scholar 

  72. Pengel KE, Koolen BB, Loo CE, et al. Combined use of 18F-FDG PET/CT and MRI for response monitoring of breast cancer during neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2014;41:1515–24.

    Article  CAS  PubMed  Google Scholar 

  73. Partridge SC, Vanantwerp RK, Doot RK, et al. Association between serial dynamic contrast enhanced MRI and dynamic 18F-FDG PET measures in patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer. J Magn Reson Imaging. 2010;32:1124–31.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Bahri S, Chen J, Mehta RS, et al. Residual breast cancer diagnosed by MRI in patients receiving neoadjuvant chemotherapy with and without bevacizumab. Cancer. 2009;16:1619–28.

    Google Scholar 

Download references

Conflicts of interest

None.

Funding

This work was supported by a grant from Associazione Italiana Ricerca sul Cancro (Study INT/35/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Agresti.

Additional information

Flavio Crippa and Roberto Agresti contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crippa, F., Agresti, R., Sandri, M. et al. 18F-FLT PET/CT as an imaging tool for early prediction of pathological response in patients with locally advanced breast cancer treated with neoadjuvant chemotherapy: a pilot study. Eur J Nucl Med Mol Imaging 42, 818–830 (2015). https://doi.org/10.1007/s00259-015-2995-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-2995-8

Keywords

Navigation