Skip to main content
Log in

Targeted radionuclide therapy with RAFT-RGD radiolabelled with 90Y or 177Lu in a mouse model of αvβ3-expressing tumours

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The αvβ3 integrin plays an important role in tumour-induced angiogenesis, tumour proliferation, survival and metastasis. The tetrameric RGD-based peptide, regioselectively addressable functionalized template-(cyclo-[RGDfK])4 (RAFT-RGD), specifically targets the αvβ3 integrin in vitro and in vivo. The aim of this study was to evaluate the therapeutic potential of RAFT-RGD radiolabelled with β emitters in a nude mouse model of αvβ3 integrin-expressing tumours.

Methods

Biodistribution and SPECT/CT imaging studies were performed after injection of 90Y-RAFT-RGD or 177Lu-RAFT-RGD in nude mice subcutaneously xenografted with αvβ3 integrin-expressing U-87 MG cells. Experimental targeted radionuclide therapy with 90Y-RAFT-RGD or 177Lu-RAFT-RGD and 90Y-RAFT-RAD or 177Lu-RAFT-RAD (nonspecific controls) was evaluated by intravenous injection of the radionuclides into mice bearing αvβ3 integrin-expressing U-87 MG tumours of different sizes (small or large) or bearing TS/A-pc tumours that do not express αvβ3. Tumour volume doubling time was used to evaluate the efficacy of each treatment.

Results

Injection of 37 MBq of 90Y-RAFT-RGD into mice with large αvβ3-positive tumours or 37 MBq of 177Lu-RAFT-RGD into mice with small αvβ3-positive tumours caused significant growth delays compared to mice treated with 37 MBq of 90Y-RAFT-RAD or 37 MBq of 177Lu-RAFT-RAD or untreated mice. In contrast, injection of 30 MBq of 90Y-RAFT-RGD had no effect on the growth of αvβ3-negative tumours.

Conclusion

90Y-RAFT-RGD and 177Lu-RAFT-RGD are potent agents targeting αvβ3-expressing tumours for internal targeted radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.

    Article  CAS  PubMed  Google Scholar 

  2. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    Article  CAS  PubMed  Google Scholar 

  3. Pinon P, Wehrle-Haller B. Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation. Pigment Cell Melanoma Res. 2011;24:282–94.

    Article  CAS  PubMed  Google Scholar 

  4. Reardon DA, Perry JR, Brandes AA, Jalali R, Wick W. Advances in malignant glioma drug discovery. Expert Opin Drug Discov. 2011;6:739–53.

    Article  CAS  PubMed  Google Scholar 

  5. Lambert AW, Ozturk S, Thiagalingam S. Integrin signaling in mammary epithelial cells and breast cancer. ISRN Oncol. 2012;2012:493283. doi:10.5402/2012/493283.

    PubMed Central  PubMed  Google Scholar 

  6. Matsuura M, Suzuki T, Saito T. Osteopontin is a new target molecule for ovarian clear cell carcinoma therapy. Cancer Sci. 2010;101:1828–33.

    Article  CAS  PubMed  Google Scholar 

  7. Hosotani R, Kawaguchi M, Masui T, Koshiba T, Ida J, Fujimoto K, et al. Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas. 2002;25:30–5.

    Article  Google Scholar 

  8. Fani M, Maecke HR, Okarvi SM. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2:481–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jin ZH, Josserand V, Razkin J, Garanger E, Boturyn D, Favrot MC, et al. Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c(-RGDfK-)4. Mol Imaging. 2006;5:188–97.

    PubMed  Google Scholar 

  10. Jin ZH, Josserand V, Foillard S, Boturyn D, Dumy P, Favrot MC, et al. In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Mol Cancer. 2007;6:41–50.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Sancey L, Ardisson V, Riou LM, Ahmadi M, Marti-Batlle D, Boturyn D, et al. In vivo imaging of tumour angiogenesis in mice with the αvβ3 integrin-targeted tracer 99mTc-RAFT-RGD. Eur J Nucl Med Mol Imaging. 2007;34:2037–47.

    Article  CAS  PubMed  Google Scholar 

  12. Ahmadi M, Sancey L, Briat A, Riou L, Boturyn D, Dumy P, et al. Chemical and biological evaluations of an (111)In-labeled RGD-peptide targeting integrin alpha(V) beta(3) in a preclinical tumour model. Cancer Biother Radiopharm. 2008;23:691–700.

    Article  CAS  PubMed  Google Scholar 

  13. Foillard S, Sancey L, Coll JL, Boturyn D, Dumy P. Targeted delivery of activatable fluorescent pro-apoptotic peptide into live cells. Org Biomol Chem. 2009;7:221–4.

    Article  CAS  PubMed  Google Scholar 

  14. Dufort S, Sancey L, Hurbin A, Foillard S, Boturyn D, Dumy P, et al. Targeted delivery of a proapoptotic peptide to tumors in vivo. J Drug Target. 2011;19:582–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. De Jong M, Valkema R, Van Gameren A, Van Boven H, Bex A, Van De Weyer EP, et al. Inhomogeneous localization of radioactivity in the human kidney after injection of [(111)In-DTPA]octreotide. J Nucl Med. 2004;45:1168–71.

    PubMed  Google Scholar 

  16. Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0), Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med. 2005;46 Suppl 1:S83–91.

    Google Scholar 

  17. Vegt E, Wetzels JF, Russel FG, Masereeuw R, Boerman OC, van Eerd JE, et al. Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med. 2006;47:432–6.

    CAS  PubMed  Google Scholar 

  18. Briat A, Wenk CH, Ahmadi M, Claron M, Boturyn D, Josserand V, et al. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging. Cancer Sci. 2012;103:1105–10. doi:10.1111/j.1349-7006.2012.02286.

    Article  CAS  PubMed  Google Scholar 

  19. De Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46 Suppl 1:S13–7.

    Google Scholar 

  20. Boturyn D, Coll JL, Garanger E, Favrot MC, Dumy P. Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc. 2004;126:5730–9.

    Article  CAS  PubMed  Google Scholar 

  21. Liu S, Edwards DS. Stabilization of (90)Y-labeled DOTA-biomolecule conjugates using gentisic acid and ascorbic acid. Bioconjug Chem. 2001;12:554–8.

    Article  CAS  PubMed  Google Scholar 

  22. Liu S, Cheung E, Ziegler MC, Rajopadhye M, Edwards DS. (90)Y and (177)Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. Bioconjug Chem. 2001;12:559–68.

    Article  CAS  PubMed  Google Scholar 

  23. Xiong Z, Cheng Z, Zhang X, Patel M, Wu JC, Gambhir SS, et al. Imaging chemically modified adenovirus for targeting tumors expressing integrin αvβ3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J Nucl Med. 2006;47:130–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. J Nucl Med. 2006;47:113–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res. 2002;62(21):6146–51.

    CAS  PubMed  Google Scholar 

  26. Dijkgraaf I, Kruijtzer JA, Frielink C, Corstens FH, Oyen WJ, Liskamp RM, et al. Alpha v beta 3 integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide. Int J Cancer. 2007;120(3):605–10.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Z, Shi J, Jia B, Yu Z, Liu Y, Zhao H, et al. Two 90Y labelled multimeric RGD peptides RGD4 and 3PRGD2 for integrin targeted radionuclide therapy. Mol Pharm. 2011;8(2):591–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sarma HD, Das T, Banerjee S, Venkatesh M, Vidyasagar PB, Mishra KP. Studies on efficacy of a novel 177Lu-labeled porphyrin derivative in regression of tumors in mouse model. Curr Radiopharm. 2011;4:150–60.

    Article  CAS  PubMed  Google Scholar 

  29. Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56.

    Article  CAS  PubMed  Google Scholar 

  30. Kirschner A, Ice R, Beierwaltes W. Radiation dosimetry of 131I-19-iodocholesterol: the pitfalls of using tissue concentration data, the author’s reply. J Nucl Med. 1975;16:248–9.

    CAS  Google Scholar 

  31. Rizvi SN, Visser OJ, Vosjan MJ, van Lingen A, Hoekstra OS, Zijlstra JM, et al. Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol Imaging. 2012;39:512–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  33. Yoshimoto M, Ogawa K, Washiyama K, Shikano N, Mori H, Amano R, et al. αvβ3 Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer. 2008;123:709–15.

    Article  CAS  PubMed  Google Scholar 

  34. Jin ZH, Furukawa T, Galibert M, Boturyn D, Coll JL, Fukumura T, et al. Noninvasive visualization and quantification of tumor αVβ3 integrin expression using a novel positron emission tomography probe, 64Cu-cyclam-RAFT-c(-RGDfK-)4. Nucl Med Biol. 2011;38:529–40.

    Article  CAS  PubMed  Google Scholar 

  35. O’Donoghue JA, Bardiès M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36:1902–9.

    PubMed  Google Scholar 

  36. Pouget JP, Navarro-Teulon I, Bardiès M, Chouin N, Cartron G, Pèlegrin A, et al. Clinical radioimmunotherapy – the role of radiobiology. Nat Rev Clin Oncol. 2011;8:720–34.

    Article  CAS  PubMed  Google Scholar 

  37. Kraeber-Bodéré F, Bodet-Milin C, Niaudet C, Saï-Maurel C, Moreau A, Faivre-Chauvet A, et al. Comparative toxicity and efficacy of combined radioimmunotherapy and antiangiogenic therapy in carcinoembryonic antigen-expressing medullary thyroid cancer xenograft. J Nucl Med. 2010;51:624–31.

    Article  PubMed  Google Scholar 

  38. Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, et al. Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. J Nucl Med. 2003;44(3):465–74.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the French programme Investissement d’Avenir run by the Agence Nationale pour la Recherche’ (grant Infrastructure d’avenir en Biologie Santé - ANR-11-INBS-0006) and by the Agence Nationale pour la Recherche et la Technologie (ANRT).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Ghezzi.

Additional information

C. Ghezzi and J. P. Vuillez contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 36 kb)

ESM 2

(DOC 174 kb)

ESM 3

(DOC 1101 kb)

ESM 4

(DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozon-Petitprin, A., Bacot, S., Gauchez, A.S. et al. Targeted radionuclide therapy with RAFT-RGD radiolabelled with 90Y or 177Lu in a mouse model of αvβ3-expressing tumours. Eur J Nucl Med Mol Imaging 42, 252–263 (2015). https://doi.org/10.1007/s00259-014-2891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2891-7

Keywords

Navigation