Skip to main content

Advertisement

Log in

Correlation between [18F]FDG PET/CT and volume perfusion CT in primary tumours and mediastinal lymph nodes of non-small-cell lung cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate correlations between glucose metabolism as determined by [18F]FDG PET/CT and tumour perfusion as quantified by volume perfusion CT in primary tumours and mediastinal lymph nodes (MLN) of patients with non-small-cell lung cancer (NSCLC).

Methods

Enrolled in the study were 17 patients with NSCLC. [18F]FDG uptake was quantified in terms of SUVmax and SUVavg. Blood flow (BF), blood volume (BV) and flow extraction product (Ktrans) were determined as perfusion parameters. The correlations between the perfusion parameters and [18F]FDG uptake values were subsequently evaluated.

Results

For the primary tumours, no correlations were found between perfusion parameters and [18F]FDG uptake. In MLN, there were negative correlations between BF and SUVavg (r = −0.383), BV and SUVavg (r = −0.406), and BV and SUVmax (r = −0.377), but not between BF and SUVmax, Ktrans and SUVavg, or Ktrans and SUVmax. Additionally, in MLN with SUVmax >2.5 there were negative correlations between BF and SUVavg (r = −0.510), BV and SUVavg (r = −0.390), BF and SUVmax (r = −0.536), as well as BV and SUVmax (r = −0.346).

Conclusion

Perfusion and glucose metabolism seemed to be uncoupled in large primary tumours, but an inverse correlation was observed in MLN. This information may help improve therapy planning and response evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  2. Raz DJ, Zell JA, Ou SH, Gandara DR, Anton-Culver H, Jablons DM. Natural history of stage I non-small cell lung cancer: implications for early detection. Chest. 2007;132:193–9.

    Article  PubMed  Google Scholar 

  3. Farray D, Mirkovic N, Albain KS. Multimodality therapy for stage III non-small-cell lung cancer. J Clin Oncol. 2005;23:3257–69.

    Article  PubMed  CAS  Google Scholar 

  4. Walker CM, Chung JH, Abbott GF, Little BP, El-Sherief AH, Shepard JA, et al. Mediastinal lymph node staging: from noninvasive to surgical. AJR Am J Roentgenol. 2012;199:W54–64.

    Article  PubMed  Google Scholar 

  5. Silvestri GA, Gould MK, Margolis ML, Tanoue LT, McCrory D, Toloza E, et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132:178S–201.

    Article  PubMed  Google Scholar 

  6. Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, De Wever WF, Verbeken EK, et al. FDG-PET scan in potentially operable non-small cell lung cancer: do anatometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? The Leuven Lung Cancer Group. Eur J Nucl Med. 1998;25:1495–501.

    Article  PubMed  CAS  Google Scholar 

  7. Schmid-Bindert G, Henzler T, Chu TQ, Meyer M, Nance Jr JW, Schoepf UJ, et al. Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol. 2012;22:93–103.

    Article  PubMed  CAS  Google Scholar 

  8. Mandeville HC, Ng QS, Daley FM, Barber PR, Pierce G, Finch J, et al. Operable non-small cell lung cancer: correlation of volumetric helical dynamic contrast-enhanced CT parameters with immunohistochemical markers of tumor hypoxia. Radiology. 2012;264:581–9.

    Article  PubMed  Google Scholar 

  9. de Langen AJ, van den Boogaart V, Lubberink M, Backes WH, Marcus JT, van Tinteren H, et al. Monitoring response to antiangiogenic therapy in non-small cell lung cancer using imaging markers derived from PET and dynamic contrast-enhanced MRI. J Nucl Med. 2011;52:48–55.

    Article  PubMed  Google Scholar 

  10. Schillaci O, Spanu A, Scopinaro F, Monteleone F, Solinas ME, Volpino P, et al. Mediastinal lymph node involvement in non-small cell lung cancer: evaluation with 99mTc-tetrofosmin SPECT and comparison with CT. J Nucl Med. 2003;44:1219–24.

    PubMed  Google Scholar 

  11. Hoekstra CJ, Stroobants SG, Hoekstra OS, Smit EF, Vansteenkiste JF, Lammertsma AA. Measurement of perfusion in stage IIIA-N2 non-small cell lung cancer using H(2)(15)O and positron emission tomography. Clin Cancer Res. 2002;8:2109–15.

    PubMed  Google Scholar 

  12. Graves EE, Maity A, Le QT. The tumor microenvironment in non-small-cell lung cancer. Semin Radiat Oncol. 2010;20:156–63.

    Article  PubMed  Google Scholar 

  13. Le QT, Chen E, Salim A, Cao H, Kong CS, Whyte R, et al. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006;12:1507–14.

    Article  PubMed  CAS  Google Scholar 

  14. Bollineni VR, Wiegman EM, Pruim J, Groen HJ, Langendijk JA. Hypoxia imaging using positron emission tomography in non-small cell lung cancer: implications for radiotherapy. Cancer Treat Rev. 2012;38:1027–32.

    Article  PubMed  Google Scholar 

  15. Veronesi G, Landoni C, Pelosi G, Picchio M, Sonzogni A, Leon ME, et al. Fluoro-deoxi-glucose uptake and angiogenesis are independent biological features in lung metastases. Br J Cancer. 2002;86:1391–5.

    Article  PubMed  CAS  Google Scholar 

  16. Hirasawa S, Tsushima Y, Takei H, Hirasawa H, Taketomi-Takahashi A, Takano A, et al. Inverse correlation between tumor perfusion and glucose uptake in human head and neck tumors. Acad Radiol. 2007;14:312–8.

    Article  PubMed  Google Scholar 

  17. Ohno Y, Koyama H, Matsumoto K, Onishi Y, Takenaka D, Fujisawa Y, et al. Differentiation of malignant and benign pulmonary nodules with quantitative first-pass 320-detector row perfusion CT versus FDG PET/CT. Radiology. 2011;258:599–609.

    Article  PubMed  Google Scholar 

  18. Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res. 2004;10:2245–52.

    Article  PubMed  CAS  Google Scholar 

  19. Huang T, Civelek AC, Li J, Jiang H, Ng CK, Postel GC, et al. Tumor microenvironment-dependent 18F-FDG, 18F-fluorothymidine, and 18F-misonidazole uptake: a pilot study in mouse models of human non-small cell lung cancer. J Nucl Med. 2012;53:1262–8.

    Article  PubMed  CAS  Google Scholar 

  20. Hellwig D, Graeter TP, Ukena D, Groeschel A, Sybrecht GW, Schaefers HJ, et al. 18F-FDG PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med. 2007;48:1761–6.

    Article  PubMed  Google Scholar 

  21. Miles KA, Hayball M, Dixon AK. Colour perfusion imaging: a new application of computed tomography. Lancet. 1991;337:643–5.

    Article  PubMed  CAS  Google Scholar 

  22. Tacelli N, Remy-Jardin M, Copin MC, Scherpereel A, Mensier E, Jaillard S, et al. Assessment of non-small cell lung cancer perfusion: pathologic-CT correlation in 15 patients. Radiology. 2010;257:863–71.

    Article  PubMed  Google Scholar 

  23. van den Hoff J. Assessment of lung cancer perfusion by using patlak analysis: what do we measure? Radiology. 2007;243:907–8.

    Article  PubMed  Google Scholar 

  24. Thieme SF, Johnson TR, Lee C, McWilliams J, Becker CR, Reiser MF, et al. Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol. 2009;193:144–9.

    Article  PubMed  Google Scholar 

  25. Kahraman D, Scheffler M, Zander T, Nogova L, Lammertsma AA, Boellaard R, et al. Quantitative analysis of response to treatment with Erlotinib in advanced non-small cell lung cancer using 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med. 2011;52:1871–7.

    Article  PubMed  CAS  Google Scholar 

  26. Yabuuchi H, Hatakenaka M, Takayama K, Matsuo Y, Sunami S, Kamitani T, et al. Non-small cell lung cancer: detection of early response to chemotherapy by using contrast-enhanced dynamic and diffusion-weighted MR imaging. Radiology. 2011;261:598–604.

    Article  PubMed  Google Scholar 

  27. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank our technicians Nicole Sachse, Astrid Schreiber, Henriette Heners and Simeon Winterstein for excellent assistance. Siemens Healthcare supported the study.

Conflicts of interest

Claus D. Claussen has a collaboration contract with Siemens Healthcare concerning the development of volume perfusion CT. Ernst Klotz is a Siemens Healthcare employee. All other authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander W. Sauter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauter, A.W., Spira, D., Schulze, M. et al. Correlation between [18F]FDG PET/CT and volume perfusion CT in primary tumours and mediastinal lymph nodes of non-small-cell lung cancer. Eur J Nucl Med Mol Imaging 40, 677–684 (2013). https://doi.org/10.1007/s00259-012-2318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2318-2

Keywords

Navigation