Skip to main content

Advertisement

Log in

Molecular imaging of σ receptors: synthesis and evaluation of the potent σ1 selective radioligand [18F]fluspidine

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Neuroimaging of σ1 receptors in the human brain has been proposed for the investigation of the pathophysiology of neurodegenerative and psychiatric diseases. However, there is a lack of suitable 18F-labelled PET radioligands for that purpose.

Methods

The selective σ1 receptor ligand [18F]fluspidine (1′-benzyl-3-(2-[18F]fluoroethyl)-3H-spiro[[2]benzofuran-1,4′-piperidine]) was synthesized by nucleophilic 18F substitution of the tosyl precursor. In vitro receptor binding affinity and selectivity were assessed by radioligand competition in tissue homogenate and autoradiographic approaches. In female CD-1 mice, in vivo properties of [18F]fluspidine were evaluated by ex vivo brain section imaging and organ distribution of intravenously administered radiotracer. Target specificity was validated by organ distribution of [18F]fluspidine after treatment with 1 mg/kg i.p. of the σ receptor antagonist haloperidol or the emopamil binding protein (EBP) inhibitor tamoxifen. In vitro metabolic stability and in vivo metabolism were investigated by LC-MSn and radio-HPLC analysis.

Results

[18F]Fluspidine was obtained with a radiochemical yield of 35–45%, a radiochemical purity of ≥ 99.6% and a specific activity of 150–350 GBq/μmol (n = 6) within a total synthesis time of 90–120 min. In vitro, fluspidine bound specifically and with high affinity to σ1 receptors (K i = 0.59 nM). In mice, [18F]fluspidine rapidly accumulated in brain with uptake values of 3.9 and 4.7%ID/g and brain to blood ratios of 7 and 13 at 5 and 30 min after intravenous application of the radiotracer, respectively. By ex vivo autoradiography of brain slices, resemblance between binding site occupancy of [18F]fluspidine and the expression of σ1 receptors was shown. The radiotracer uptake in the brain as well as in peripheral σ1 receptor expressing organs was significantly inhibited by haloperidol but not by tamoxifen. Incubation with rat liver microsomes led to a fast biotransformation of fluspidine. After an incubation period of 30 min only 13% of the parent compound was left. Seven metabolites were identified by HPLC-UV and LC-MSn techniques. However, [18F]fluspidine showed a higher metabolic stability in vivo. In plasma samples ∼ 94% of parent compound remained at 30 min and ∼ 67% at 60 min post-injection. Only one major radiometabolite was detected. None of the radiometabolites crossed the blood-brain barrier.

Conclusion

[18F]Fluspidine demonstrated favourable target affinity and specificity as well as metabolic stability both in vitro and in animal experiments. The in vivo properties of [18F]fluspidine offer a high potential of this radiotracer for neuroimaging and quantitation of σ1 receptors in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976;197:517–32.

    CAS  PubMed  Google Scholar 

  2. Hayashi T, Su TP. Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS Drugs 2004;18:269–84.

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi T, Su TP. The sigma receptor: evolution of the concept in neuropsychopharmacology. Curr Neuropharmacol 2005;3:267–80.

    Article  CAS  PubMed  Google Scholar 

  4. Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma(1)(σ1) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 2000;20:375–87.

    Article  CAS  PubMed  Google Scholar 

  5. Bowen WD, Hellewell SB, McGarry KA. Evidence for a multi-site model of the rat brain sigma receptor. Eur J Pharmacol 1989;163:309–18.

    Article  CAS  PubMed  Google Scholar 

  6. Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, et al. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 1992;13:85–6.

    Article  CAS  PubMed  Google Scholar 

  7. Kekuda R, Prasad PD, Fei YJ, Leibach FH, Ganapathy V. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 1996;229:553–8.

    Article  CAS  PubMed  Google Scholar 

  8. Su TP, Hayashi T, Vaupel DB. When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor. Sci Signal 2009;2:pe12.

    Article  PubMed  Google Scholar 

  9. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007;131:596–610.

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa M, Hashimoto K. The role of sigma-1 receptors in the pathophysiology of neuropsychiatric diseases. J Receptor Ligand Channel Res 2010;3:25–36.

    CAS  Google Scholar 

  11. Shen YC, Wang YH, Chou YC, Liou KT, Yen JC, Wang WY, et al. Dimemorfan protects rats against ischemic stroke through activation of sigma-1 receptor-mediated mechanisms by decreasing glutamate accumulation. J Neurochem 2008;104:558–72.

    CAS  PubMed  Google Scholar 

  12. Valenzuela CF, Partridge LD, Mameli M, Meyer DA. Modulation of glutamatergic transmission by sulfated steroids: role in fetal alcohol spectrum disorder. Brain Res Rev 2008;57:506–19.

    Article  CAS  PubMed  Google Scholar 

  13. Bermack JE, Debonnel G. Distinct modulatory roles of sigma receptor subtypes on glutamatergic responses in the dorsal hippocampus. Synapse 2005;55:37–44.

    Article  CAS  PubMed  Google Scholar 

  14. Maurice T, Urani A, Phan VL, Romieu P. The interaction between neuroactive steroids and the sigma1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Brain Res Rev 2001;37:116–32.

    Article  CAS  PubMed  Google Scholar 

  15. Vallée M, Mayo W, Koob GF, Le Moal M. Neurosteroids in learning and memory processes. Int Rev Neurobiol 2001;46:273–320.

    Article  PubMed  Google Scholar 

  16. Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology (Berl) 2004;174:301–19.

    Article  CAS  Google Scholar 

  17. Hayashi T, Su TP. Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Natl Acad Sci U S A 2004;101:14949–54.

    Article  CAS  PubMed  Google Scholar 

  18. Demerens C, Stankoff B, Zalc B, Lubetzki C. Eliprodil stimulates CNS myelination: new prospects for multiple sclerosis? Neurology 1999;52:346–50.

    CAS  PubMed  Google Scholar 

  19. Berardi F, Abate C, Ferorelli S, de Robertis AF, Leopoldo M, Colabufo NA, et al. Novel 4-(4-aryl)cyclohexyl-1-(2-pyridyl)piperazines as Δ8-Δ7 sterol isomerase (emopamil binding protein) selective ligands with antiproliferative activity. J Med Chem 2008;51:7523–31.

    Article  CAS  PubMed  Google Scholar 

  20. Hanner M, Moebius FF, Weber F, Grabner M, Striessnig J, Glossmann H. Phenylalkylamine Ca2+ antagonist binding protein. Molecular cloning, tissue distribution, and heterologous expression. J Biol Chem 1995;270:7551–7.

    Article  CAS  PubMed  Google Scholar 

  21. Silve S, Dupuy PH, Labit-Lebouteiller C, Kaghad M, Chalon P, Rahier A, et al. Emopamil-binding protein, a mammalian protein that binds a series of structurally diverse neuroprotective agents, exhibits delta8-delta7 sterol isomerase activity in yeast. J Biol Chem 1996;271:22434–40.

    Article  CAS  PubMed  Google Scholar 

  22. Jansen KL, Faull RL, Storey P, Leslie RA. Loss of sigma binding sites in the CA1 area of the anterior hippocampus in Alzheimer’s disease correlates with CA1 pyramidal cell loss. Brain Res 1993;623:299–302.

    Article  CAS  PubMed  Google Scholar 

  23. Mishina M, Ishiwata K, Ishii K, Kitamura S, Kimura Y, Kawamura K, et al. Function of sigma1 receptors in Parkinson’s disease. Acta Neurol Scand 2005;112:103–7.

    Article  CAS  PubMed  Google Scholar 

  24. Mishina M, Ohyama M, Ishii K, Kitamura S, Kimura Y, Oda K, et al. Low density of sigma1 receptors in early Alzheimer’s disease. Ann Nucl Med 2008;22:151–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ishikawa M, Ishiwata K, Ishii K, Kimura Y, Sakata M, Naganawa M, et al. High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503. Biol Psychiatry 2007;62:878–83.

    Article  CAS  PubMed  Google Scholar 

  26. Waterhouse RN, Chang RC, Atuehene N, Collier TL. In vitro and in vivo binding of neuroactive steroids to the sigma-1 receptor as measured with the positron emission tomography radioligand [18F]FPS. Synapse.2007;61:540–6.

    Article  CAS  PubMed  Google Scholar 

  27. Waterhouse RN, Collier TL. In vivo evaluation of [18F]1-(3-fluoropropyl)-4-(4-cyanophenoxymethyl)piperidine: a selective sigma-1 receptor radioligand for PET. Nucl Med Biol 1997;24:127–34.

    Article  CAS  PubMed  Google Scholar 

  28. Mach RH, Gage HD, Buchheimer N, Huang Y, Kuhner R, Wu L, et al. N-[18F]4′-fluorobenzylpiperidin-4yl-(2-fluorophenyl) acetamide ([18F]FBFPA): a potential fluorine-18 labeled PET radiotracer for imaging sigma-1 receptors in the CNS. Synapse 2005;58:267–74.

    Article  CAS  PubMed  Google Scholar 

  29. Kawamura K, Tsukada H, Shiba K, Tsuji C, Harada N, Kimura Y, et al. Synthesis and evaluation of fluorine-18-labeled SA4503 as a selective sigma1 receptor ligand for positron emission tomography. Nucl Med Biol 2007;34:571–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kawamura K, Ishiwata K, Shimada Y, Kimura Y, Kobayashi T, Matsuno K, et al. Preclinical evaluation of [11C]SA4503: radiation dosimetry, in vivo selectivity and PET imaging of σ1 receptors in the cat brain. Ann Nucl Med 2000;14:285–92.

    Article  CAS  PubMed  Google Scholar 

  31. Shiue CY, Shiue GG, Zhang SX, Wilder S, Greenberg JH, Benard F, et al. N-(N-benzylpiperidin-4-yl)-2-[18F]fluorobenzamide: a potential ligand for PET imaging of σ receptors. Nucl Med Biol 1997;24:671–6.

    Article  CAS  PubMed  Google Scholar 

  32. Waterhouse RN, Lombardo I, Simpson N, Kegeles LS, Laruelle M. Evaluation of the novel sigma-1 receptor radioligand 1-(3-[F-18]fluoropropyl)-4-[(4-cyanophenoxy)methyl]piperidine, [F-18]FPS: PET imaging studies in baboons. Neuroimage 2000;11:S16.

    Article  Google Scholar 

  33. Waterhouse RN, Nobler MS, Zhou Y, Chang RC, Morales O, Kuwabara H, et al. First evaluation of the sigma-1 receptor radioligand [18F]1-3-fluoropropyl-4-((4-cyanophenoxy)-methyl)piperidine ([18F]FPS) in healthy humans. Neuroimage 2004;22:T29.

    Article  Google Scholar 

  34. Matsuno K, Nakazawa M, Okamoto K, Kawashima Y, Mita S. Binding properties of SA4503, a novel and selective σ1 receptor agonist. Eur J Pharmacol 1996;306:271–9.

    Article  CAS  PubMed  Google Scholar 

  35. Lever JR, Gustafson JL, Xu R, Allmon RL, Lever SZ. σ1 and σ2 receptor binding affinity and selectivity of SA4503 and fluoroethyl SA4503. Synapse 2006;59:350–8.

    Article  CAS  PubMed  Google Scholar 

  36. Shiba K, Ogawa K, Ishiwata K, Yajima K, Mori H. Synthesis and binding affinities of methylvesamicol analogs for the acetylcholine transporter and sigma receptor. Bioorg Med Chem 2006;14:2620–6.

    Article  CAS  PubMed  Google Scholar 

  37. Berardi F, Ferorelli S, Colabufo NA, Leopoldo M, Perrone R, Tortorella V. A multireceptorial binding reinvestigation on an extended class of sigma ligands: N-[omega-(indan-1-yl and tetralin-1-yl)alkyl] derivatives of 3,3-dimethylpiperidine reveal high affinities towards sigma1 and EBP sites. Bioorg Med Chem 2001;9:1325–35.

    Article  CAS  PubMed  Google Scholar 

  38. Große Maestrup E, Fischer S, Wiese C, Schepmann D, Hiller A, Deuther-Conrad W, et al. Evaluation of spirocyclic 3-(3-fluoropropyl)-2-benzofurans as σ1 receptor ligands for neuroimaging with positron emission tomography. J Med Chem 2009;52:6062–72.

    Article  Google Scholar 

  39. Große Maestrup E, Wiese C, Schepmann D, Brust P, Wünsch B. Synthesis, pharmacological activity and structure-affinity relationships of spirocyclic σ1 receptor ligands with a (2-fluoroethyl) residue in 3-position. Bioorg Med Chem (in press).

  40. Wirt U, Schepmann D, Wünsch B. Asymmetric synthesis of 1-substituted tetrahydro-3-benzazepines as NMDA receptor antagonists. Eur J Org Chem 2007;2007(3):462–75.

    Article  Google Scholar 

  41. Jung B, Englberger W, Fröhlich R, Schepmann D, Lehmkuhl K, Wünsch B. Synthesis and pharmacological evaluation of bicyclic SNC80 analogues with separated benzhydryl moiety. Bioorg Med Chem 2008;16:2870–85.

    Article  CAS  PubMed  Google Scholar 

  42. Holl R, Jung B, Schepmann D, Humpf HU, Grünert R, Bednarski PJ, et al. Synthesis and pharmacological evaluation of SNC80 analogues with a bridged piperazine ring. ChemMedChem 2009;4:2111–22.

    Article  CAS  PubMed  Google Scholar 

  43. Wolfe Jr SA, Ha BK, Whitlock BB, Saini P. Differential localization of three distinct binding sites for sigma receptor ligands in rat spleen. J Neuroimmunol 1997;72:45–58.

    Article  CAS  PubMed  Google Scholar 

  44. Moebius FF, Reiter RJ, Bermoser K, Glossmann H, Cho SY, Paik YK. Pharmacological analysis of sterol delta8-delta7 isomerase proteins with [3H]ifenprodil. Mol Pharmacol 1998;54:591–8.

    CAS  PubMed  Google Scholar 

  45. Toyohara J, Sakata M, Ishiwata K. Imaging of sigma1 receptors in the human brain using PET and [11C]SA4503. Cent Nerv Syst Agents Med Chem 2009;9:190–6.

    CAS  PubMed  Google Scholar 

  46. Grosse Maestrup E, Wiese C, Schepmann D, Hiller A, Fischer S, Scheunemann M, et al. Synthesis of spirocyclic σ1 receptor ligands as potential PET radiotracers, structure-affinity relationships and in vitro metabolic stability. Bioorg Med Chem 2009;17:3630–41.

    Article  CAS  PubMed  Google Scholar 

  47. Ishiwata K, Oda K, Sakata M, Kimura Y, Kawamura K, Sasaki T, et al. A feasibility study of [11C]SA4503-PET for evaluating sigmal receptor occupancy by neuroleptics: the binding of haloperidol to sigma1 and dopamine D2-like receptors. Ann Nucl Med 2006;20:569–73.

    Article  CAS  PubMed  Google Scholar 

  48. Kawamura K, Ishiwata K, Tajima H, Ishii SI, Matsuno K, Homma Y, et al. In vivo evaluation of [(11)C]SA4503 as a PET ligand for mapping CNS sigma(1) receptors. Nucl Med Biol 2000;27:255–61.

    Article  CAS  PubMed  Google Scholar 

  49. Dussossoy D, Carayon P, Belugou S, Feraut D, Bord A, Goubet C, et al. Colocalization of sterol isomerase and sigma(1) receptor at endoplasmic reticulum and nuclear envelope level. Eur J Biochem 1999;263:377–86.

    Article  CAS  PubMed  Google Scholar 

  50. Phan VL, Urani A, Sandillon F, Privat A, Maurice T. Preserved sigma1 (sigma1) receptor expression and behavioral efficacy in the aged C57BL/6 mouse. Neurobiol Aging 2003;24:865–81.

    Article  CAS  PubMed  Google Scholar 

  51. Bouchard P, Quirion R. [3H]1,3-di(2-tolyl)guanidine and [3H](+)pentazocine binding sites in the rat brain: autoradiographic visualization of the putative sigma1 and sigma2 receptor subtypes. Neuroscience 1997;76:467–77.

    Article  CAS  PubMed  Google Scholar 

  52. Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, et al. Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 2000;97:155–70.

    Article  CAS  PubMed  Google Scholar 

  53. Walker JM, Bowen WD, Goldstein SR, Roberts AH, Patrick SL, Hohmann AG, et al. Autoradiographic distribution of [3H](+)-pentazocine and [3H]1,3-di-o-tolylguanidine (DTG) binding sites in guinea pig brain: a comparative study. Brain Res 1992;581:33–8.

    Article  CAS  PubMed  Google Scholar 

  54. Mash DC, Zabetian CP. Sigma receptors are associated with cortical limbic areas in the primate brain. Synapse 1992;12:195–205.

    Article  CAS  PubMed  Google Scholar 

  55. Chan SL, Morgan NG. Sigma receptor ligands and imidazoline secretagogues mediate their insulin secretory effects by activating distinct receptor systems in isolated islets. Eur J Pharmacol 1998;350:267–72.

    Article  CAS  PubMed  Google Scholar 

  56. Junien JL, Su TP. Sigma receptors in the central nervous system and the periphery. In: Itzhak Y, Bowen WD, editors. Sigma receptors. New York: Academic; 1994. p. 21–44.

    Google Scholar 

  57. Seth P, Fei YJ, Li HW, Huang W, Leibach FH, Ganapathy V. Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 1998;70:922–31.

    Article  CAS  PubMed  Google Scholar 

  58. Hirata M, Mori T, Soga S, Umeda T, Ohmomo Y. In vivo evaluation of radioiodinated 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)-piperazine derivatives as new ligands for sigma receptor imaging using single photon emission computed tomography. Biol Pharm Bull 2006;29:2009–15.

    Article  CAS  PubMed  Google Scholar 

  59. Waterhouse RN, Stabin MG, Page JG. Preclinical acute toxicity studies and rodent-based dosimetry estimates of the novel sigma-1 receptor radiotracer [(18)F]FPS. Nucl Med Biol 2003;30:555–63.

    Article  CAS  PubMed  Google Scholar 

  60. Parkinson A, Kazmi F, Buckley DB, Yerino P, Ogilvie BW, Paris BL. System-dependent outcomes during the evaluation of drug candidates as inhibitors of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) enzymes: human hepatocytes versus liver microsomes versus recombinant enzymes. Drug Metab Pharmacokinet 2010;25:16–27.

    Article  CAS  PubMed  Google Scholar 

  61. Guengerich FP, Martin MV, Beaune PH, Kremers P, Wolff T, Waxman DJ. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J Biol Chem 1986;261:5051–60.

    CAS  PubMed  Google Scholar 

  62. Kremers P, Beaune P, Cresteil T, de Graeve J, Columelli S, Leroux JP, et al. Cytochrome P-450 monooxygenase activities in human and rat liver microsomes. Eur J Biochem 1981;118:599–606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Deutsche Forschungsgemeinschaft, which is gratefully acknowledged. The authors thank Tina Ludwig for her excellent technical assistance, the staff of the cyclotron facility at the department of Nuclear Medicine, University of Leipzig, for [18F]F production and the Saxon Institute for Applied Biotechnology for supply of the EBP.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Brust.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, S., Wiese, C., Große Maestrup, E. et al. Molecular imaging of σ receptors: synthesis and evaluation of the potent σ1 selective radioligand [18F]fluspidine. Eur J Nucl Med Mol Imaging 38, 540–551 (2011). https://doi.org/10.1007/s00259-010-1658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1658-z

Keywords

Navigation