Skip to main content

Advertisement

Log in

Diagnostic value of kinetic analysis using dynamic FDG PET in immunocompetent patients with primary CNS lymphoma

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the accumulation of FDG in immunocompetent patients with primary central nervous system (CNS) lymphoma using qualitative and quantitative PET images and to compare baseline with follow-up PET after therapy.

Methods

Twelve immunocompetent patients with CNS lymphoma were examined. Dynamic emission data were acquired for 60 min immediately following injection of FDG. In seven patients, repeated PET studies were performed after treatment. Applying a three-compartment five-parameter model, K 1, k 2, k 3, k 4, vascular fraction (V B ) and cerebral metabolic rate of glucose (CMRGlc) were obtained. We evaluated the FDG uptake visually using qualitative and parametric images and quantitatively using parametric images.

Results

A total of 12 lesions were identified in ten patients with newly diagnosed CNS lymphoma. On visual analysis, ten lesions showed an increase on qualitative images, eight showed an increase on K 1 images, 12 showed an increase on k 3 images and ten showed an increase on CMRGlc images. On quantitative analysis, k 2, k 3 and CMRGlc values of the lesion were significantly different from those of the normal grey matter (p<0.02–0.0005). A total of three lesions were identified in two patients with recurrent tumour. All three lesions showed an increase on qualitative, k 3 and CMRGlc images. The K 1, k 2, k 3 and CMRGlc values after treatment were significantly different from those obtained before treatment (p<0.04–0.008).

Conclusion

Kinetic analysis, especially with respect to k 3, using dynamic FDG PET might be helpful for diagnosis of CNS lymphoma and for monitoring therapeutic assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hochberg FH, Miller DC. Primary central nervous system lymphoma. J Neurosurg 1988;68:835–854

    Article  PubMed  CAS  Google Scholar 

  2. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumours in adults. Lancet 2003;361:323–331

    Article  PubMed  Google Scholar 

  3. Jiddane M, Nicoli F, Diaz P, Bergvall U, Vincentelli F, Hassoun J, et al. Intracranial malignant lymphoma: report of 30 cases and review of the literature. J Neurosurg 1986;65:592–599

    PubMed  CAS  Google Scholar 

  4. Basso U, Brandes AA. Diagnostic advances and new trends for treatment of primary central nervous system lymphoma. Eur J Cancer 2002;38:1298–1312

    Article  PubMed  CAS  Google Scholar 

  5. Coleman RE. Clinical PET in oncology. Clin Pos Imaging 1998;1:15–30

    Article  Google Scholar 

  6. Newman J, Francis I, Kaminski M, Wahl RL. FDG-PET imaging in lymphoma: correlation with CT. Radiology 1994;190:111–116

    PubMed  CAS  Google Scholar 

  7. Alavi JB, Alavi A, Chawluk J, Wahl RL. PET in patients with glioma. A predictor of prognosis. Cancer 1988;62:1074–1078

    Article  PubMed  CAS  Google Scholar 

  8. Sasaki M, Kuwabara Y, Yoshida T, Nakagawa M, Fukumura T, Mihara F, et al. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 1998;25:1261–1269

    Article  PubMed  CAS  Google Scholar 

  9. Rosenfeld SS, Hoffman JM, Coleman RE, Glantz MJ, Hanson MW, Schold SC. Studies of primary central nervous system lymphoma with fluorine-18-fluorodeoxyglucose positron emission tomography. J Nucl Med 1992;33:532–536

    PubMed  CAS  Google Scholar 

  10. Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, et al. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 1993;34:567–575

    PubMed  CAS  Google Scholar 

  11. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6:371–388

    Article  PubMed  CAS  Google Scholar 

  12. Huang SC, Williams BA, Barrio JR, Krivokapich J, Nissenson C, Hoffman EJ, et al. Measurement of glucose and 2-deoxy-2 [18F] fluoro-D-glucose transport and phosphorylation rates in myocardium using dual-tracer kinetic experiment. FEBS Lett 1987;216:128–132

    Article  PubMed  CAS  Google Scholar 

  13. Mankoff D, Dunnwald LK, Gralow JR, Ellis GK, Charlop A, Lawton TJ, et al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 2002;43:500–509

    PubMed  Google Scholar 

  14. Wu HM, Bergsneider M, Glenn TC, Yeh E, Hovda DA, Phelps ME, et al. Measurement of the global lumped constant for 2-deoxy-2-[18F] fluoro-D-glucose in normal human brain using [15O] water and 2-deoxy-2 [18F] fluoro-D-glucose positron emission tomography imaging: a method with validation based on multiple methodologies. Mol Imaging Biol 2003;5:32–41

    Article  PubMed  Google Scholar 

  15. Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL. Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 2002;29:443–453

    Article  PubMed  CAS  Google Scholar 

  16. Ishikawa M, Kikuchi H, Nagata I. Glucose consumption and rate constants for 18F-fluorodeoxyglucose in human gliomas. Neurol Med Chir 1990;30:377–381

    Article  CAS  Google Scholar 

  17. Herholz K, Rudolf J, Heiss WD. FDG transport and phosphorylation in human gliomas measured with dynamic PET. J Neurooncol 1992;12:159–165

    Article  PubMed  CAS  Google Scholar 

  18. Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, Bernd L, Haberkorn U, Ewerbeck V, et al. 18F-FDG kinetics and gene expression in giant cell tumors. J Nucl Med 2004;45:1528–1535

    PubMed  CAS  Google Scholar 

  19. Palmedo H, Urbach H, Bender H, Schlegel U, Schmidt-Wolf IG, Matthies A, et al. FDG-PET in immunocompetent patients with primary central nervous system lymphoma: correlation with MRI and clinical follow-up. Eur J Nucl Med Mol Imaging 2006;33:164–168

    Article  PubMed  CAS  Google Scholar 

  20. O’Doherty MJ, Barrington SF, Campbell M, Lowe J, Bradbeer CS. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 1997;38:1575–1583

    PubMed  CAS  Google Scholar 

  21. Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Shishido F, et al. Perfusion and metabolism in predicting the survival of patients with gliomas. Cancer 1994;73:2386–2394

    Article  PubMed  CAS  Google Scholar 

  22. Terae S, Ogata A. Nonenhancing primary central nervous system lymphoma. Neuroradiology 1996;38:34–37

    Article  PubMed  CAS  Google Scholar 

  23. Earnest F 4th, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, et al. Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 1988;166:823–827

    PubMed  Google Scholar 

  24. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurology 1982;32:1323–1329

    PubMed  Google Scholar 

  25. Wahl RL, Zasadny KR, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993;11:2101–2111

    PubMed  CAS  Google Scholar 

  26. Romer W, Hanauske AR, Ziegler S, Thodtmann R, Weber W, Fuchs C, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998;91:4464–4471

    PubMed  CAS  Google Scholar 

  27. Hautzel H, Muller-Gartner HW. Early changes in fluorine-18-FDG uptake during radiotherapy. J Nucl Med 1997;38:1384–1386

    PubMed  CAS  Google Scholar 

  28. Fischman AJ, Thornton AF, Frosch MP, Swearinger B, Gonzalez RG, Alpert NM. FDG hypermetabolism associated with inflammatory necrotic changes following radiation of meningioma. J Nucl Med 1997;38:1027–1029

    PubMed  CAS  Google Scholar 

  29. Haberkorn U, Strauss LG, Dimitrakopoupou A, Engenhart R, Oberdorfer F, Ostertag H, et al. PET studies of dluorodeoxy glucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991;32:1485–1490

    PubMed  CAS  Google Scholar 

  30. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, et al. Comparative regional analysis of 2-fluoro deoxyglucose and methyl glucose uptake in brain of four stroke patients with special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab 1985;5:163–178

    PubMed  CAS  Google Scholar 

  31. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [11C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28:897–916

    Article  PubMed  CAS  Google Scholar 

  32. Ogawa T, Kanno I, Hatazawa J, Inugami A, Fujita H, Shimosegawa E, et al. Methionine PET for follow-up of radiation therapy of primary lymphoma of the brain. RadioGraphics 1994;14:101–110

    PubMed  CAS  Google Scholar 

  33. Pruim J, Willemsen ATM, Molenaar W, van Waarde A, Paans AM, Heesters MA, et al. Brain tumors: l-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 1995;197:221–226

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Chietsugu Katoh, MD (Hokkaido University, Sapporo, Japan), for the provision of helpful information regarding the dynamic FDG PET imaging protocol and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Nishiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiyama, Y., Yamamoto, Y., Monden, T. et al. Diagnostic value of kinetic analysis using dynamic FDG PET in immunocompetent patients with primary CNS lymphoma. Eur J Nucl Med Mol Imaging 34, 78–86 (2007). https://doi.org/10.1007/s00259-006-0153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0153-z

Keywords

Navigation