Skip to main content

Advertisement

Log in

Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Stress fractures of the foot and ankle are a commonly encountered problem among athletes and individuals participating in a wide range of activities. This illustrated review, the second of two parts, discusses site-specific etiological factors, imaging appearances, treatment options, and differential considerations of stress fractures of the foot and ankle. The imaging and clinical management of stress fractures of the foot and ankle are highly dependent on the specific location of the fracture, mechanical forces acting upon the injured site, vascular supply of the injured bone, and the proportion of trabecular to cortical bone at the site of injury. The most common stress fractures of the foot and ankle are low risk and include the posteromedial tibia, the calcaneus, and the second and third metatarsals. The distal fibula is a less common location, and stress fractures of the cuboid and cuneiforms are very rare, but are also considered low risk. In contrast, high-risk stress fractures are more prone to delayed union or nonunion and include the anterior tibial cortex, medial malleolus, navicular, base of the second metatarsal, proximal fifth metatarsal, hallux sesamoids, and the talus. Of these high-risk types, stress fractures of the anterior tibial cortex, the navicular, and the proximal tibial cortex may be predisposed to poor healing because of the watershed blood supply in these locations. The radiographic differential diagnosis of stress fracture includes osteoid osteoma, malignancy, and chronic osteomyelitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Fredericson M, Jennings F, Beaulieu C, Matheson GO. Stress fractures in athletes. Top Magn Reson Imaging. 2006;17(5):309–25.

    Article  PubMed  Google Scholar 

  2. Iwamoto J, Takeda T. Stress fractures in athletes: review of 196 cases. J Orthop Sci. 2003;8(3):273–8.

    Article  PubMed  Google Scholar 

  3. Milgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, et al. An analysis of the biomechanical mechanism of tibial stress fractures among Israeli infantry recruits. A prospective study. Clin Orthop Relat Res. 1988;231:216–21.

    Google Scholar 

  4. Wilson ES, Katz FN. Stress fractures. An analysis of 250 consecutive cases. Radiology. 1969;92(3):481–6.

    Article  PubMed  Google Scholar 

  5. Hopson CN, Perry DR. Stress fractures of the calcaneus in women marine recruits. Clin Orthop Relat Res. 1977;128:159–62.

    Google Scholar 

  6. Greaney RB, Gerber FH, Laughlin RL, Kmet JP, Metz CD, Kilcheski TS, et al. Distribution and natural history of stress fractures in U.S. Marine recruits. Radiology. 1983;146(2):339–46.

    Article  CAS  PubMed  Google Scholar 

  7. Daffner RH, Pavlov H. Stress fractures: current concepts. AJR Am J Roentgenol. 1992;159(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  8. Chuckpaiwong B, Cook C, Nunley JA. Stress fractures of the second metatarsal base occur in nondancers. Clin Orthop Relat Res. 2007;461(461):197–202.

    PubMed  Google Scholar 

  9. Anderson RB, Cohen BE. Chapter 31—Stress fractures of the foot and ankle. 9th ed. Mann’s Surg. Foot Ankle. Elsevier Inc.; 2014.

  10. Ekenman I, Tsai-Felländer L, Johansson C, O’Brien M. The plantar flexor muscle attachments on the tibia. Scand J Med Sci Sports. 2007;5(3):160–4.

    Article  Google Scholar 

  11. Anderson MW, Ugalde V, Batt M, Gacayan J. Shin splints: MR appearance in a preliminary study. Radiology. 1997;204(1):177–80.

    Article  CAS  PubMed  Google Scholar 

  12. Aoki Y, Yasuda K, Tohyama H, Ito H, Minami A. Magnetic resonance imaging in stress fractures and shin splints. Clin Orthop Relat Res. 2004;421:260–7.

    Article  Google Scholar 

  13. Jaimes C, Jimenez M, Shabshin N, Laor T, Jaramillo D. Taking the stress out of evaluating stress injuries in children. Radiographics. 2012;32(2):537–55.

    Article  PubMed  Google Scholar 

  14. Daffner RH, Martinez S, Gehweiler JA, Harrelson JM. Stress fractures of the proximal tibia in runners. Radiology. 1982;142(1):63–5.

    Article  CAS  PubMed  Google Scholar 

  15. Devas M. Longitudinal stress fractures. J Bone Jt Surg. 1960;42B(3).

  16. Umans HR, Kaye JJ. Longitudinal stress fractures of the tibia: diagnosis by magnetic resonance imaging. Skelet Radiol. 1996;25(4):319–24.

    Article  CAS  Google Scholar 

  17. Craig JG, Widman D, van Holsbeeck M. Longitudinal stress fracture: patterns of edema and the importance of the nutrient foramen. Skelet Radiol. 2003;32(1):22–7.

    Article  Google Scholar 

  18. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.

    Article  CAS  PubMed  Google Scholar 

  19. Kijowski R, Choi J, Shinki K, Del Rio AM, De Smet A. Validation of MRI classification system for tibial stress injuries. Am J Roentgenol. 2012;198(4):878–84.

    Article  Google Scholar 

  20. Nattiv A, Kennedy G, Barrack MT, Abdelkerim A, Goolsby MA, Arends JC, et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med. 2013;41(8):1930–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pathria MN, Chung CB, Resnick DL. Acute and stress-related injuries of bone and cartilage: pertinent anatomy, basic biomechanics, and imaging perspective. Radiology. 2016;280(1):21–38.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pester S, Smith PC. Stress fractures in the lower extremities of soldiers in basic training. Orthop Rev. 1992;21(3):297–303.

    CAS  PubMed  Google Scholar 

  24. Dodson NB, Dodson EE, Shromoff PJ. Imaging strategies for diagnosing calcaneal and cuboid stress fractures. Clin Podiatr Med Surg. 2008;25(2):183–201.

    Article  PubMed  Google Scholar 

  25. Wall J, Feller JF. Imaging of stress fractures in runners. Clin Sports Med. 2006;25(4):781–802.

    Article  PubMed  Google Scholar 

  26. Sormaala MJ, Niva MH, Kiuru MJ, Mattila VM, Pihlajamäki HK. Stress injuries of the calcaneus detected with magnetic resonance imaging in military recruits. J Bone Joint Surg Am. 2006;88(10):2237–42.

    PubMed  Google Scholar 

  27. Taketomi S, Uchiyama E, Iwaso H. Stress fracture of the anterior process of the calcaneus: a case report. Foot Ankle Spec. 2013;6(5):389–92.

    Article  PubMed  Google Scholar 

  28. Pearce CJ, Tr F, Uk M, Zaw H, Calder JDF. Stress fracture of the anterior process of the calcaneus associated with a calcaneonavicular coalition: a case report. Stress Int J Biol Stress. 2011;1:85–8.

    Google Scholar 

  29. Albisetti W, Perugia D, De Bartolomeo O, Tagliabue L, Camerucci E, Calori GM. Stress fractures of the base of the metatarsal bones in young trainee ballet dancers. Int Orthop. 2010;34(1):51–5.

    Article  PubMed  Google Scholar 

  30. Savoca CJ. Stress fractures. A classification of the earliest radiographic signs. Radiology. 1971;100(3):519–24.

    Article  CAS  PubMed  Google Scholar 

  31. Woods M, Kijowski R, Sanford M, Choi J, De Smet A. Magnetic resonance imaging findings in patients with fibular stress injuries. Skelet Radiol. 2008;37(9):835–41.

    Article  Google Scholar 

  32. Kottmeier SA, Hanks GA, Kalenak A. Fibular stress fracture associated with distal tibiofibular synostosis in an athlete. A case report and literature review. Clin Orthop Relat Res. 1992;281:195–8.

    Google Scholar 

  33. Richmond D, Shafar J. A case of bilateral fatigue fracture of the fibula. Br Med J. 1955;1(4908):264–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Franco M, Albano L, Kacso I, Gaïd H, Jaeger P. An uncommon cause of foot pain: the cuboid insufficiency stress fracture. Joint Bone Spine. 2005;72(1):76–8.

    Article  PubMed  Google Scholar 

  35. Yu JS, Solmen J. Stress fractures associated with plantar fascia disruption: two case reports involving the cuboid. J Comput Assist Tomogr. 2001;25(6):971–4.

    Article  CAS  PubMed  Google Scholar 

  36. Yu SM, Dardani M, Yu JS. MRI of isolated cuboid stress fractures in adults. Am J Roentgenol. 2013;201(6):1325–30.

    Article  Google Scholar 

  37. Bui-Mansfield LT, Thomas WR. Magnetic resonance imaging of stress injury of the cuneiform bones in patients with plantar fasciitis. J Comput Assist Tomogr. 2009;33(4):593–6.

    Article  PubMed  Google Scholar 

  38. Welck MJ, Hayes T, Pastides P, Khan W, Rudge B. Stress fractures of the foot and ankle. Injury. Elsevier Ltd; 2015.

  39. Orava S, Hulkko A. Stress fracture of the mid-tibial shaft. Acta Orthop Scand. 2016;6470.

  40. Beals RK, Cook RD. Stress fractures of the anterior tibial diaphysis. Orthopedics. 1991;14(8):869–75.

    CAS  PubMed  Google Scholar 

  41. Orava S, Karpakka J, Hulkko A, Väänänen K, Takala T, Kallinen M, et al. Diagnosis and treatment of stress fractures located at the mid-tibial shaft in athletes. Int J Sports Med. 1991;3:419–22.

    Article  Google Scholar 

  42. Varner KE. Chronic anterior midtibial stress fractures in athletes treated with reamed intramedullary nailing. Am J Sports Med. 2005;33(7):1071–6.

    Article  PubMed  Google Scholar 

  43. Caesar BC, McCollum GA, Elliot R, Williams A, Calder JDF. Stress fractures of the tibia and medial malleolus. Foot Ankle Clin. 2013;18(2):339–55.

    Article  PubMed  Google Scholar 

  44. Gross CE, Nunley JA. Navicular stress fractures. Foot Ankle Int. 2015;36(9):1117–22.

    Article  PubMed  Google Scholar 

  45. Van Meensel AS, Peers K. Navicular stress fracture in high-performing twin brothers: a case report. Acta Orthop Belg. 2010;76(3):407–12.

    PubMed  Google Scholar 

  46. Maquirriain J, Ghisi JP. The incidence and distribution of stress fractures in elite tennis players. Br J Sports Med. 2006;40(5):454–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen WP, Tang FT, Ju CW. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis. Clin Biomech. 2001;16(7):614–20.

    Article  CAS  Google Scholar 

  48. Sizensky JA, Marks RM. Imaging of the navicular. Foot Ankle Clin. 2004;9(1):181–209.

    Article  PubMed  Google Scholar 

  49. Rule J, Yao L, Seeger LL. Spring ligament of the ankle: normal MR anatomy. AJR Am J Roentgenol. 1993;161(6):1241–4.

    Article  CAS  PubMed  Google Scholar 

  50. Coris EE, Lombardo JA. Tarsal navicular stress fractures. Am Fam Physician. 2003;67(1):85–90.

    PubMed  Google Scholar 

  51. Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg. 1998;39(2):96–103.

    Article  Google Scholar 

  52. Khan KM, Fuller PJ, Brukner PD, Kearney C, Burry HC. Outcome of conservative and surgical management of navicular stress fracture in athletes. Eighty-six cases proven with computerized tomography. Am J Sports Med. 20(6):657–66.

  53. Saxena A, Fullem B. Navicular stress fractures: a prospective study on athletes. Foot Ankle Int. 2006;27(11):917–21.

    Article  PubMed  Google Scholar 

  54. Robinson M, Fulcker M. Delayed healing of a navicular stress fracture, following limited weight-bearing activity. BMJ Case Rep. 2014;5–8.

  55. Torg JS, Moyer J, Gaughan JP, Boden BP. Management of tarsal navicular stress fractures: conservative versus surgical treatment: a meta-analysis. Am J Sports Med. 2010;38(5):1048–53.

    Article  PubMed  Google Scholar 

  56. Toren AJ, Hahn DB, Brown WC, Stone PA, Ng A. Vascularized scapular free bone graft after nonunion of a tarsal navicular stress fracture: a case report. J Foot Ankle Surg. 2013;52(2):221–6.

    Article  PubMed  Google Scholar 

  57. Jowett AJL, Birks CL, Blackney MC. Medial malleolar stress fracture secondary to chronic ankle impingement. Foot Ankle Int. 2008;29(7):716–21.

    Article  PubMed  Google Scholar 

  58. Orava S, Karpakka J, Taimela S, Hulkko A, Permi J, Kujala U. Stress fracture of the medial malleolus. J Bone Joint Surg Am. 1995;77(3):362–5.

    Article  CAS  PubMed  Google Scholar 

  59. Levy JM. Stress fractures of the first metatarsal. Am J Roentgenol. 1978;130(4):679–81.

    Article  CAS  Google Scholar 

  60. Lee KT, Kim KC, Park YU, Kim TW, Lee YK. Radiographic evaluation of foot structure following fifth metatarsal stress fracture. Foot Ankle Int. 2011;32(8):796–801.

    Article  PubMed  Google Scholar 

  61. Lawrence SJ, Botte MJ. Jones’ fractures and related fractures of the proximal fifth metatarsal. Foot Ankle. 1993;14(6):358–65.

    Article  CAS  PubMed  Google Scholar 

  62. Zwitser EW, Breederveld RS. Fractures of the fifth metatarsal; diagnosis and treatment. Injury. 2010;41(6):555–62.

    Article  CAS  PubMed  Google Scholar 

  63. Polzer H, Polzer S, Mutschler W, Prall WC. Acute fractures to the proximal fifth metatarsal bone: development of classification and treatment recommendations based on the current evidence. Injury. 2012;43(10):1626–32.

    Article  PubMed  Google Scholar 

  64. Theodorou DJ, Theodorou SJ, Kakitsubata Y, Botte MJ, Resnick D. Fractures of proximal portion of fifth metatarsal bone: anatomic and imaging evidence of a pathogenesis of avulsion of the plantar aponeurosis and the short peroneal muscle tendon. Radiology. 2003;226(3):857–65.

    Article  PubMed  Google Scholar 

  65. Jones R. Fracture of the base of the fifth metatarsal bone by indirect violence. Ann Surg. 1902;35(6):697–700.2.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith JW, Arnoczky SP, Hersh A. The intraosseous blood supply of the fifth metatarsal: implications for proximal fracture healing. Foot Ankle. 1992;13(3):143–52.

    Article  CAS  PubMed  Google Scholar 

  67. Lee KT, Park YU, Young KW, Kim JS, Kim JB. The plantar gap: another prognostic factor for fifth metatarsal stress fracture. Am J Sports Med. 2011;39(10):2206–11.

    Article  PubMed  Google Scholar 

  68. Kerkhoffs GM, Versteegh VE, Sierevelt IN, Kloen P, van Dijk CN. Treatment of proximal metatarsal V fractures in athletes and non-athletes. Br J Sports Med. 2012;46(9):644–8.

    Article  PubMed  Google Scholar 

  69. Carmont MR. Sesamoid stress fractures. In: Sports injuries. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 2035–41.

    Chapter  Google Scholar 

  70. Helal B. The great toe sesamoid bones: the lus or lost souls of Ushaia. Clin Orthop Relat Res. 1981;157:82–7.

    Google Scholar 

  71. Kim YS, Lee HM, Kim JP, Moon HS. Fatigue stress fracture of the talar body: an uncommon cause of ankle pain. J Foot Ankle Surg. 2016;55(5):1113–6.

    Article  PubMed  Google Scholar 

  72. Sormaala MJ, Niva MH, Kiuru MJ, Mattila VM, Pihlajamäki HK. Bone stress injuries of the talus in military recruits. Bone. 2006;39(1):199–204.

    Article  PubMed  Google Scholar 

  73. Elias I, Zoga AC, Raikin SM, Peterson JR, Besser MP, Morrison WB, et al. Bone stress injury of the ankle in professional ballet dancers seen on MRI. BMC Musculoskelet Disord. 2008;9(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mcinnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PM R. 2016;8(3):S113–24.

    Article  PubMed  Google Scholar 

  75. Fayad LM, Kamel IR, Kawamoto S, Bluemke DA, Frassica FJ, Fishman EK. Distinguishing stress fractures from pathologic fractures: a multimodality approach. Skelet Radiol. 2005;34(5):245–59.

    Article  Google Scholar 

  76. Fayad LM, Kawamoto S, Kamel IR, Bluemke DA, Eng J, Frassica FJ, et al. Distinction of long bone stress fractures from pathologic fractures on cross-sectional imaging: how successful are we? Am J Roentgenol. 2005;185(4):915–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob C. Mandell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandell, J.C., Khurana, B. & Smith, S.E. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skeletal Radiol 46, 1165–1186 (2017). https://doi.org/10.1007/s00256-017-2632-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2632-7

Keywords

Navigation