Skip to main content
Log in

Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration.

Materials and methods

Human osteochondral samples of variable degeneration (n = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index]) and attenuation (OAI, optical attenuation index]). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0–4)/grade-I (scores 5–8)/grade-II (scores 9–10)/grade-III (score 11–14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey’s post-hoc test and Spearman’s correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated.

Results

Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively.

Conclusion

Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akizuki S, Mow VC, Muller F, Pita JC, Howell DS. Tensile properties of human knee joint cartilage. II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. J Orthop Res. 1987;5(2):173–86.

    Article  CAS  PubMed  Google Scholar 

  2. Johnson VL, Giuffre BM, Hunter DJ. Osteoarthritis: what does imaging tell us about its etiology? Semin Musculoskelet Radiol. 2012;16(5):410–8.

    Article  PubMed  Google Scholar 

  3. Bay-Jensen AC, Hoegh-Madsen S, Dam E, Henriksen K, Sondergaard BC, Pastoureau P, et al. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int. 2010;30(4):435–42.

    Article  PubMed  Google Scholar 

  4. Palmer AJ, Brown CP, McNally EG, Price AJ, Tracey I, Jezzard P, et al. Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J. 2013;95-B(6):738–46.

    Article  CAS  PubMed  Google Scholar 

  5. Neu CP. Functional imaging in OA: role of imaging in the evaluation of tissue biomechanics. Osteoarthr Cartil. 2014;22(10):1349–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mannicke N, Schone M, Oelze M, Raum K. Articular cartilage degeneration classification by means of high-frequency ultrasound. Osteoarthr Cartil. 2014;22(10):1577–82.

    Article  CAS  PubMed  Google Scholar 

  7. Chu CR, Lin D, Geisler JL, Chu CT, Fu FH, Pan Y. Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am J Sports Med. 2004;32(3):699–709.

    Article  PubMed  Google Scholar 

  8. Han CW, Chu CR, Adachi N, Usas A, Fu FH, Huard J, et al. Analysis of rabbit articular cartilage repair after chondrocyte implantation using optical coherence tomography. Osteoarthr Cartil. 2003;11(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Martin S, Pitris C, Ghanta R, Stamper DL, Harman M, et al. High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthritis Res Ther. 2005;7(2):R318–23.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Xie T, Guo S, Zhang J, Chen Z, Peavy GM. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography. Lasers Surg Med. 2006;38(9):852–65.

    Article  PubMed  Google Scholar 

  11. Saarakkala S, Wang SZ, Huang YP, Zheng YP. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography. Phys Med Biol. 2009;54(22):6837–52.

    Article  PubMed  Google Scholar 

  12. Viren T, Huang YP, Saarakkala S, Pulkkinen H, Tiitu V, Linjama A, et al. Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage. J Med Eng Technol. 2012;36(3):185–92.

    Article  CAS  PubMed  Google Scholar 

  13. Brill N, Riedel J, Rath B, Tingart M, Jahr H, Betsch M, et al. Optical coherence tomography-based parameterization and quantification of articular cartilage surface integrity. Biomed Opt Express. 2015;6(7):2398–411.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Nebelung S, Marx U, Brill N, Arbab D, Quack V, Jahr H, et al. Morphometric grading of osteoarthritis by optical coherence tomography: an ex vivo study. J Orthop Res. 2014;32(10):1381–8.

    Article  PubMed  Google Scholar 

  15. Subburaj K, Souza RB, Stehling C, Wyman BT, Le Graverand-Gastineau MP, Link TM, et al. Association of MR relaxation and cartilage deformation in knee osteoarthritis. J Orthop Res. 2012;30(6):919–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41(5):857–65.

    Article  CAS  PubMed  Google Scholar 

  17. Zilkens C, Miese F, Herten M, Kurzidem S, Jager M, Konig D, et al. Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study. Eur J Radiol. 2013;82(2):e81–6.

    Article  PubMed  Google Scholar 

  18. Li X, Cheng J, Lin K, Saadat E, Bolbos RI, Jobke B, et al. Quantitative MRI using T1rho and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29(3):324–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Nishioka H, Hirose J, Nakamura E, Oniki Y, Takada K, Yamashita Y, et al. T1rho and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging: JMRI. 2012;35(1):147–55.

    Article  PubMed  Google Scholar 

  20. Kim T, Min BH, Yoon SH, Kim H, Park S, Lee HY, et al. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. Skelet Radiol. 2014;43(7):947–54.

    Article  Google Scholar 

  21. Brill N, et al. 3D human cartilage surface characterization by optical coherence tomography. Phys Med Biol. 2015;60(19):7747–62.

    Article  PubMed  Google Scholar 

  22. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg (Br). 1961;43-B:752–7.

    CAS  Google Scholar 

  23. de Bont F, Brill N, Schmitt R, Tingart M, Rath B, Pufe T, et al. Evaluation of single-impact-induced cartilage degeneration by optical coherence tomography. BioMed Res Int. 2015;2015:486794.

    PubMed Central  PubMed  Google Scholar 

  24. Nebelung S, Brill N, Marx U, Quack V, Tingart M, Schmitt R, et al. Three-dimensional imaging and analysis of human cartilage degeneration using optical coherence tomography. J Orthop Res. 2015;33(5):651–9.

    Article  PubMed  Google Scholar 

  25. Wiener E, Pfirrmann CW, Hodler J. Spatial variation in T1 of healthy human articular cartilage of the knee joint. Br J Radiol. 2010;83(990):476–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rautiainen J, Nissi MJ, Salo EN, Tiitu V, Finnila MA, Aho OM, et al. Multiparametric MRI assessment of human articular cartilage degeneration: correlation with quantitative histology and mechanical properties. Magn Reson Med. 2015;74(1):249–60.

  27. Menezes NM, Gray ML, Hartke JR, Burstein D. T2 and T1rho MRI in articular cartilage systems. Magn Reson Med. 2004;51(3):503–9.

    Article  CAS  PubMed  Google Scholar 

  28. Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol. 2004;11(7):741–9.

    PubMed  Google Scholar 

  29. Williams A, Qian Y, Bear D, Chu CR. Assessing degeneration of human articular cartilage with ultra-short echo time (UTE) T2* mapping. Osteoarthr Cartil. 2010;18(4):539–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lukas VA, Fishbein KW, Lin PC, Schar M, Schneider E, Neu CP, et al. Classification of histologically scored human knee osteochondral plugs by quantitative analysis of magnetic resonance images at 3T. J Orthop Res. 2015.

  31. Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971;53(3):523–37.

    CAS  PubMed  Google Scholar 

  32. Gahunia HK, Babyn P, Lemaire C, Kessler MJ, Pritzker KP. Osteoarthritis staging: comparison between magnetic resonance imaging, gross pathology and histopathology in the rhesus macaque. Osteoarthr Cartil. 1995;3(3):169–80.

    Article  CAS  PubMed  Google Scholar 

  33. D’Agostino RB. Tests for normal distribution. In: D’Agostino RB, Stephens MA, editors. Goodness-of-fit techniques. New York: Dekker; 1986. p. 367–420.

    Google Scholar 

  34. Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45–50.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Berberat JE, Nissi MJ, Jurvelin JS, Nieminen MT. Assessment of interstitial water content of articular cartilage with T1 relaxation. Magn Reson Imaging. 2009;27(5):727–32.

    Article  PubMed  Google Scholar 

  36. Lin PC, Reiter DA, Spencer RG. Sensitivity and specificity of univariate MRI analysis of experimentally degraded cartilage. Magn Reson Med. 2009;62(5):1311–8.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Keenan KE, Besier TF, Pauly JM, Han E, Rosenberg J, Smith RL, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wang L, Regatte RR. T1rho MRI of human musculoskeletal system. J Magn Reson Imaging: JMRI. 2015;41(3):586–600.

    Article  PubMed  Google Scholar 

  39. Bear DM, Williams A, Chu CT, Coyle CH, Chu CR. Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content. J Orthop Res. 2009;28(4):546–52.

    Google Scholar 

  40. Chu CR, Williams A, Tolliver D, Kwoh CK, Bruno 3rd S, Irrgang JJ. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheum. 2010;62(5):1412–20.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Zheng K, Martin SD, Rashidifard CH, Liu B, Brezinski ME. In vivo micron-scale arthroscopic imaging of human knee osteoarthritis with optical coherence tomography: comparison with magnetic resonance imaging and arthroscopy. Am J Orthop (Belle Mead NJ). 2010;39(3):122–5.

    Google Scholar 

  42. Qian Y, Williams AA, Chu CR, Boada FE. Multicomponent T2* mapping of knee cartilage: technical feasibility ex vivo. Magn Reson Med. 2010;64(5):1426–31.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Bittersohl B, Hosalkar HS, Miese FR, Schibensky J, Konig DP, Herten M, et al. Zonal T2* and T1Gd assessment of knee joint cartilage in various histological grades of cartilage degeneration: an observational in vitro study. BMJ Open. 2015;5(2):e006895.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kurkijarvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn Reson Med. 2004;52(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  45. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging: JMRI. 2006;23(4):547–53.

    Article  PubMed  Google Scholar 

  46. Burstein D, Gray M. New MRI techniques for imaging cartilage. J Bone Joint Surg Am. 2003;85-A Suppl 2:70–7.

    PubMed  Google Scholar 

  47. Souza RB, Kumar D, Calixto N, Singh J, Schooler J, Subburaj K, et al. Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthr Cartil. 2014;22(10):1367–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthr Cartil. 2007;15(7):789–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.

    Article  PubMed  Google Scholar 

  51. Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A. Osteoarthritis year 2013 in review: imaging. Osteoarthr Cartil. 2013;21(10):1425–35.

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Majumdar S. Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging: JMRI. 2013;38(5):991–1008.

    Article  PubMed  Google Scholar 

  53. Wang L, Regatte RR. Quantitative mapping of human cartilage at 3.0T: parallel changes in T(2), T(1)rho, and dGEMRIC. Acad Radiol. 2014;21(4):463–71.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Dardzinski BJ, Schneider E. Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin-spin (T2) relaxation time measurements. Osteoarthr Cartil. 2013;21(5):710–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Surowiec RK, Lucas EP, Ho CP. Quantitative MRI in the evaluation of articular cartilage health: reproducibility and variability with a focus on T2 mapping. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1385–95.

    Article  PubMed  Google Scholar 

  56. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil. 2006;14(1):13–29.

    Article  CAS  PubMed  Google Scholar 

  57. Chan SM, Neu CP, Duraine G, Komvopoulos K, Reddi AH. Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage. Osteoarthr Cartil. 2010;18(7):956–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research project was supported by the START Program of the Faculty of Medicine, RWTH Aachen, Germany, granted to SN (AZ 09/14). HJ is a member of D-Board; this project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant No. 305815. The authors would also like to thank Ms. Sophie Lecouturier for performing the histological workup as well as Simon Oehrl and Björn Sondern for helping with the MRI measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Nebelung.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this study, local Institutional Review Board approval (Ethical Committee – RWTH Aachen, Germany, AZ-EK 157/13) was obtained. Likewise, informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nebelung, S., Brill, N., Tingart, M. et al. Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration. Skeletal Radiol 45, 505–516 (2016). https://doi.org/10.1007/s00256-016-2334-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2334-6

Keywords

Navigation