Skip to main content

Advertisement

Log in

3D printing from diagnostic images: a radiologist’s primer with an emphasis on musculoskeletal imaging—putting the 3D printing of pathology into the hands of every physician

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing has recently erupted into the medical arena due to decreased costs and increased availability of printers and software tools. Due to lack of detailed information in the medical literature on the methods for 3D printing, we have reviewed the medical and engineering literature on the various methods for 3D printing and compiled them into a practical “how to” format, thereby enabling the novice to start 3D printing with very limited funds. We describe (1) background knowledge, (2) imaging parameters, (3) software, (4) hardware, (5) post-processing, and (6) financial aspects required to cost-effectively reproduce a patient’s disease ex vivo so that the patient, engineer and surgeon may hold the anatomy and associated pathology in their hands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kumar S et al. Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals. ACS Appl Mater Interfaces. 2012;4(10):5399–407. doi:10.1021/am301321v.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar S, Kruth JP. Composites by rapid prototyping technology. Mater Des. 2010;31(2):850–6.

    Article  CAS  Google Scholar 

  3. Picariello P. ASTM international committee F42 on additive manufacturing technologies. 2014. Available from: http://www.astm.org/Standards/F2792.htm. Accessed October 2015

  4. Waisman M et al. Intraosseous regional anesthesia as an alternative to intravenous regional anesthesia. J Trauma. 1995;39(6):1153–6.

    Article  PubMed  CAS  Google Scholar 

  5. Bartolo P. Stereolithography: materials, processes and application. New York: Springer; 2011.

    Book  Google Scholar 

  6. Cohen A et al. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):661–6.

    Article  PubMed  Google Scholar 

  7. Campbell T, Williams C, Ivanova O, Garrett B. Could 3D printing change the world? In: Strategic foresight initiative, Washington, DC: Atlantic Council. October 2011.

  8. Rengier F et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41. doi:10.1007/s11548-010-0476-x.

    Article  PubMed  CAS  Google Scholar 

  9. Kruth JP, Leu MC, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol. 1998;47(2):525–40.

    Article  Google Scholar 

  10. Berman B. 3-D printing: the new industrial revolution. Bus Horiz. 2012;55(2):155–62.

    Article  Google Scholar 

  11. Bak D. Rapid prototyping or rapid production? 3D printing processes move industry towards latter. Assem Autom. 2003;23:340–5.

    Article  Google Scholar 

  12. Lipson H et al. 3-D printing the history of mechanisms. J Mech Des. 2005;127(5):1029.

    Article  Google Scholar 

  13. Price TR. A brief history Of 3D Printing. 2011. http://individual.troweprice.com/staticFiles/Retail/Shared/PDFs/3D_Printing_Infographic_FINAL.pdf. Accessed October 2015

  14. Kim MS et al. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117(18):2388–94.

    Article  PubMed  Google Scholar 

  15. Evans B. Practical 3D printers. New York: Springer; 2012.

    Book  Google Scholar 

  16. Silva DN et al. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg. 2008;36(8):443–9.

    Article  PubMed  Google Scholar 

  17. Markert M, Weber S, Lueth TC. A beating heart model 3D printed from specific patient data. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4472–5.

    PubMed  Google Scholar 

  18. Mironov V et al. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21(4):157–61.

    Article  PubMed  CAS  Google Scholar 

  19. Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skelet Radiol. 2013;42(2):275–82.

    Article  Google Scholar 

  20. Meinel FG et al. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Investig Radiol. 2012;47(7):406–14. doi:10.1097/RLI.0b013e31824c86a3.

    Article  Google Scholar 

  21. Ebert LC, Thali MJ, Ross S. Getting in touch: 3D printing in forensic imaging. Forensic Sci Int. 2011;211(1-3):e1–6.

    Article  PubMed  Google Scholar 

  22. Kalogerakis E, Hertzmann A, Singh K. Learning 3D mesh segmentation and labeling. ACM Trans Graph. 2010;29(4):1.

    Article  Google Scholar 

  23. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17(3):205–16.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sheffer A, Praun E, Rose K. Mesh parameterization methods and their applications. Found Trends Comput Graph Vis. 2006;2(2):105–71.

    Article  Google Scholar 

  25. Floater MS, Hormann K. Surface parameterization: a tutorial and survey. In: Farin G, Hans-Christian H, Hoffman D, Johnson C, Polthier K, Rumpf M, editors. Advances in multiresolution for geometric modelling. New York: Springer; 2005.

    Google Scholar 

  26. Cignoni P, et al. MeshLab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference. 2008. Geneva: The Eurographics Association.

  27. Hess R. The essential Blender: guide to 3D creation with the open source suite Blender. 2007. San Francisco: No Starch Press.

  28. Augustine KE, et al. Plan to procedure: combining 3D templating with rapid prototyping to enhance pedicle screw placement. In: SPIE Medical Imaging. 2010. Bellingham, WA: International Society for Optics and Photonics.

  29. Owen BD et al. Rapid prototype patient-specific drill template for cervical pedicle screw placement. Comput Aided Surg. 2007;12(5):303–8.

    Article  PubMed  Google Scholar 

  30. Parthasarathy J. 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 2014;4(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zein I et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–85.

    Article  PubMed  CAS  Google Scholar 

  32. Sood AK, Ohdar R, Mahapatra S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des. 2010;31(1):287–95.

    Article  CAS  Google Scholar 

  33. Ilievski F et al. Soft robotics for chemists. Angew Chem. 2011;123(8):1930–5.

    Article  Google Scholar 

  34. Giordano RA et al. Mechanical properties of dense polylactic acid structures fabricated by three-dimensional printing. J Biomater Sci Polym Ed. 1997;8(1):63–75.

    Article  Google Scholar 

  35. Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004;22(7):354–62.

    Article  PubMed  CAS  Google Scholar 

  36. Butscher A et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 2011;7(3):907–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Marissa Empey, our graphic artist, for doing figures 6 to 11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Elliott Brown.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, T., Michalski, M., Goodman, T.R. et al. 3D printing from diagnostic images: a radiologist’s primer with an emphasis on musculoskeletal imaging—putting the 3D printing of pathology into the hands of every physician. Skeletal Radiol 45, 307–321 (2016). https://doi.org/10.1007/s00256-015-2282-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2282-6

Keywords

Navigation