Skip to main content
Log in

Comparative analysis of continuous radon sensors in underground environments

  • Original Article
  • Published:
Environmental Geology

Abstract

Four different continuous radon (222Rn)-detection systems have been compared in underground environments, namely three subhorizontal tunnels excavated for groundwater exploitation. Within observational uncertainties, all sensors detected the same concentrations of radon in the air of the tunnels, regardless of the methodology used to measure this radioactive gas. In this sense, the choice of continuous long-term radon monitoring sensors in underground tunnels is constrained by factors such as robustness of the instrumentation, power supply and cost, rather than the sensitivity of the detection methodology. This is particularly important for the monitoring of radon in the context of seismo-volcanic surveillance, where the harsh environmental conditions of the monitoring sites and the absence of electrical power supply are key factors to take into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 8

Similar content being viewed by others

References

  • Chirkov AM (1975) Bull Volcanol 27:126

    Google Scholar 

  • Connor C, Hill B, LaFemina P, Navarro M, Conway M (1996) Soil 222Rn pulse during the initial phase of the June–August 1995 eruption of Cerro Negro, Nicaragua. J Volcanol Geotherm Res 73:119–27

    Article  CAS  Google Scholar 

  • De la Nuez J, Quesada M, Ahijado A, Coello J, Martin C (1995) Prospección de radón para la deteccion de fracturas en el edificio volcánico de Las Cañadas (Tenerife). VI Congreso Geoquimica España 1031–1037

  • Eff-Darwich A, Martin-Luis C, Quesada M, de la Nuez J, Coello J (2002) Variations on the concentration of 222Rn in the subsurface of the volcanic island of Tenerife, Canary Islands. Geophys Res Lett 29:26–29

    Article  Google Scholar 

  • Fleischer RL, Mogro-Campero A (1979) Radon enhancements in the Earth: evidence for intermittent upflows? Geophys Res Lett 6:361–364

    Google Scholar 

  • Flerov GN, Chirkov AM, Tretyakova SP, Dzholos LV, Merkina KI (1986) The use of radon as an indicator of volcanic processes. Earth Phys 22:213–16

    Google Scholar 

  • Hauksson E (1981) Radon content of groundwater as an earthquake precursor: evaluation of world-wide data and physical basis. J Geophys Res 86:9397–9410

    Google Scholar 

  • Heiligmann M, Stix J, Williams-Jones G, Sherwood-Lollar B, Garzón G (1997) Distal degassing of radon and carbon dioxide on Galeras volcano, Colombia. J Volcanol Geotherm Res 77:267–283

    Article  CAS  Google Scholar 

  • Kies A, Majerus J, D’Oreye de Lantremange N (1999) Underground radon gas concentrations related to earth tides. Il Nuovo Cimento 22:287–293

    Google Scholar 

  • Martín C, Quesada ML, Eff-Darwich A, De la Nuez J, Coello J, Ahijado A, Casillas R, Soler V (2002) A new strategy to measure radon in an active volcanic island (Tenerife, Canary Islands). Environ Geol 43:72–78

    Article  Google Scholar 

  • Pinault JL, Baubron JP (1996) Signal processing of soil gas radon, atmospheric pressure, moisture, and soil temperature data: a new approach for radon concentration modeling. J Geophys Res 101(B2:3)157–171

    Article  Google Scholar 

  • Przylibski TA, Ciezkowski W (1999) Seasonal changes of radon concentration in the Niedzwiedzia Cave (SW Pôland). Il Nuovo Cimento 22:463–469

    Google Scholar 

  • Ruckerbauer F, Winkler R (2001) Radon concentration in soil gas: a comparison of methods. Appl Radiat Isotopes 55:273–280

    Article  CAS  Google Scholar 

  • Segovia N, Mena M (1999) Soil radon pulses related to the initial phase of volcanic eruptions. Il Nuovo Cimento 22:275–279

    Google Scholar 

  • Segovia N, Mena M, Peña P, Tamez E, Seidel JL, Monnin M, Valdes C (1999) Soil radon time series: surveys in seismic and volcanic areas. Radiat Meas 31:307–312

    Article  CAS  Google Scholar 

  • Soler V, Carracedo JC, Coello J, Martín C, De la Nuez J, Badiola E (1992) Medidas de Radón en galerías y su posible relación con el volcanismo activo de Tenerife, Islas Canarias. III Congr. Geol. Esp. Salamanca 1:477–480

    Google Scholar 

  • Soler V, Castro JA, Viñas RT, Eff-Darwich A, Sánchez S, Hillarie-Marcel C, Farrujia I, Coello J, de la Nuez J, Martín MC, Quesada ML, Santana E (2004) High CO2 levels in boreholes at El Teide volcano complex (Tenerife, Canary Islands): implications for volcanic activity monitoring. Pure Appl Geophys 161(7):1519–1532

    Article  Google Scholar 

  • Toutain J-P, Baubron J-C (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304:1–27.

    Article  CAS  Google Scholar 

  • Trique M, Richon P, Perrier F, Avouac JP, Sabroux JC (1999) Radon emanation and electric potential variations associated with transient deformation near reservoir lakes. Nature 399:137–141

    Article  CAS  Google Scholar 

  • Virk HS, Singh B (1994) Radon recording of Uttarkashi earthquake. Geophys Res Lett 21:737–740

    Article  CAS  Google Scholar 

  • Wakita H, Igarashi G, Notsu K (1991) An anomalous radon decrease in groundwater prior to an M6.0 earthquake: a possible precursor? Geophys Res Lett 18:629–632

    Google Scholar 

Download references

Acknowledgements

We are grateful to Arturo Vargas and Marta Rio from the Instituto de Técnicas Energéticas (INTE) at the Universidad Politécnica de Cataluña (UPC) and to the Water Community of Union del Norte for allowing us access to the gallery. This work has been funded by the EC-CT-1999-40010, the Spanish MEC PB98-0643 and the EC VULMAC-INTERREG IIIb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eff-Darwich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viñas, R., Eff-Darwich, A., Soler, V. et al. Comparative analysis of continuous radon sensors in underground environments. Env Geol 46, 1108–1117 (2004). https://doi.org/10.1007/s00254-004-1106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-004-1106-0

Keywords

Navigation