ORIGINAL PAPER

Applied Microbiology and Biotechnology

, Volume 54, Issue 1, pp 44-51

Gene cloning and overproduction of low-specificity d-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for parkinsonism drug

  • J. Q. LiuAffiliated withLaboratory of Biocatalytic Chemistry, Biotechnology Research Center, Toyama Prefectural University, Kurokawa 5180, Kosugi, Toyama 939-0398, Japan e-mail: itoh@pu-toyama.ac.jp Tel.: +81-766-567500 Fax: +81-766-562498
  • , M. OdaniAffiliated withLaboratory of Biocatalytic Chemistry, Biotechnology Research Center, Toyama Prefectural University, Kurokawa 5180, Kosugi, Toyama 939-0398, Japan e-mail: itoh@pu-toyama.ac.jp Tel.: +81-766-567500 Fax: +81-766-562498
  • , T. YasuokaAffiliated withLaboratory of Biocatalytic Chemistry, Biotechnology Research Center, Toyama Prefectural University, Kurokawa 5180, Kosugi, Toyama 939-0398, Japan e-mail: itoh@pu-toyama.ac.jp Tel.: +81-766-567500 Fax: +81-766-562498
  • , T. DairiAffiliated withLaboratory of Biocatalytic Chemistry, Biotechnology Research Center, Toyama Prefectural University, Kurokawa 5180, Kosugi, Toyama 939-0398, Japan e-mail: itoh@pu-toyama.ac.jp Tel.: +81-766-567500 Fax: +81-766-562498
  • , N. ItohAffiliated withLaboratory of Biocatalytic Chemistry, Biotechnology Research Center, Toyama Prefectural University, Kurokawa 5180, Kosugi, Toyama 939-0398, Japan e-mail: itoh@pu-toyama.ac.jp Tel.: +81-766-567500 Fax: +81-766-562498
  • , M. KataokaAffiliated withDivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
  • , S. ShimizuAffiliated withDivision of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
  • , H. YamadaAffiliated withLaboratory of Biocatalytic Chemistry, Biotechnology Research Center, Toyama Prefectural University, Kurokawa 5180, Kosugi, Toyama 939-0398, Japan e-mail: itoh@pu-toyama.ac.jp Tel.: +81-766-567500 Fax: +81-766-562498

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The dtaAX gene encoding a pyridoxal 5′-phosphate (pyridoxal-P)-dependent low-specificity d-threonine aldolase was cloned from the chromosomal DNA of Alcaligenes xylosoxidans IFO 12669. It contains an open reading frame consisting of 1,134 nucleotides corresponding to 377 amino acid residues. The predicted amino acid sequence displayed 54% identity with that of d-threonine aldolase from gram-positive bacteria Arthrobacter sp. DK-38, but showed no significant similarity with those of other known pyridoxal-P enzymes. This gram-negative bacterial enzyme was highly overproduced in recombinant Escherichia coli cells, and the specific activity of the enzyme in the cell extract was as high as 18 U/mg (purified enzyme 38.6 U/mg), which was 6,000 times higher than that from the wild-type Alcaligenes cell extract. The recombinant enzyme was thus feasibly purified to homogeneity by ammonium sulfate fractionation and DEAE-Toyopearl chromatography steps. The recombinant low-specificity d-threonine aldolase was shown to be an efficient biocatalyst for resolution of l-β-3,4-methylenedioxyphenylserine, an intermediate for production of a therapeutic drug for Parkinson's disease.