Skip to main content
Log in

Conversion of nornicotine to 6-hydroxy-nornicotine and 6-hydroxy-myosmine by Shinella sp. strain HZN7

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nornicotine is a natural alkaloid produced by plants in the genus Nicotiana and is structurally related to nicotine. Importantly, nornicotine is the direct precursor of tobacco-specific nitrosamine N′-nitrosonornicotine, which is a highly potent human carcinogen. Microbial detoxification and degradation of nicotine have been well characterized; however, until now, there has been no information on the molecular mechanism of nornicotine degradation. In this study, we demonstrate the transformation of nornicotine by the nicotine-degrading strain Shinella sp. HZN7. Three transformation products were identified as 6-hydroxy-nornicotine, 6-hydroxy-myosmine, and 6-hydroxy-pseudooxy-nornicotine by UV spectroscopy, high-resolution mass spectrometry, nuclear magnetic resonance, and Fourier transform-infrared spectroscopy analyses. The two-component nicotine dehydrogenase genes nctA1 and nctA2 were cloned, and their product, NctA, was confirmed to be responsible for the conversion of nornicotine into 6-hydroxy-nornicotine as well as nicotine into 6-hydroxy-nicotine. The 6-hydroxy-nicotine oxidase, NctB, catalyzed the oxidation of 6-hydroxy-nornicotine to 6-hydroxy-myosmine, and it spontaneously hydrolyzed into 6-hydroxy-pseudooxy-nornicotine. However, 6-hydroxy-pseudooxy-nornicotine could not be further degraded by strain HZN7. This study demonstrated that nornicotine is partially transformed by strain HZN7 via nicotine degradation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balbo S, James-Yi S, Johnson CS, O’Sullivan MG, Stepanov I, Wang M, Bandyopadhyay D, Kassie F, Carmella S, Upadhyaya P (2013) (S)-N′-nitrosonornicotine, a constituent of smokeless tobacco, is a powerful oral cavity carcinogen in rats. Carcinogenesis 34(9):2178–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benowitz NL (2010) Nicotine addiction. N Engl J Med 362(24):2295–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Biochem 72(1):248–254

    Article  CAS  Google Scholar 

  • Brandsch R (2006) Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69(5):493–498. doi:10.1007/s00253-005-0226-0

    Article  CAS  PubMed  Google Scholar 

  • Burns D, Dybing E, Gray N, Hecht S, Anderson C, Sanner T, O’Connor R, Djordjevic M, Dresler C, Hainaut P (2008) Mandated lowering of toxicants in cigarette smoke: a description of the World Health Organization TobReg proposal. Tob Control 17(2):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai B, Bush LP (2012) Variable nornicotine enantiomeric composition caused by nicotine demethylase CYP82E4 in tobacco leaf. J Agric Food Chem 60(46):11586–11591

    Article  CAS  PubMed  Google Scholar 

  • Food U, Administration D (2011) Harmful and potentially harmful constituents in tobacco products and tobacco smoke; request for comments. Fed Regist 76:50226–50230

    Google Scholar 

  • Gagat M, Grzanka D, Izdebska M, Maczynska E, Grzanka A (2013) Nornicotine impairs endothelial cell-cell adherens junction complexes in EA. hy926 cell line via structural reorganization of F-actin. Folia Histochem Cytobiol 51(3):179–192

    Article  CAS  PubMed  Google Scholar 

  • Gavilano LB, Coleman NP, Bowen SW, Siminszky B (2007) Functional analysis of nicotine demethylase genes reveals insights into the evolution of modern tobacco. J Biol Chem 282(1):249–256

    Article  CAS  PubMed  Google Scholar 

  • Gurusamy R, Natarajan S (2013) Current status on biochemistry and molecular biology of microbial degradation of nicotine. The Sci World J 2013:1–15

    Article  CAS  Google Scholar 

  • Hajek P, Etter JF, Benowitz N, Eissenberg T, McRobbie H (2014) Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction 109(11):1801–1810

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris AC, Tally L, Muelken P, Banal A, Schmidt CE, Cao Q, LeSage MG (2015) Effects of nicotine and minor tobacco alkaloids on intracranial-self-stimulation in rats. Drug Alcohol Depend 153:330–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3(10):733–744

    Article  CAS  PubMed  Google Scholar 

  • Humans IWGotEoCRt, Cancer IAfRo (2007) Smokeless tobacco and some tobacco-specific N-nitrosamines, IARC Monograph on the Evaluation of Carcinogenic Risks to Humans, vol 89. IARC, Lyon, France

    Google Scholar 

  • Jasinska AJ, Zorick T, Brody AL, Stein EA (2014) Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology 84:111–122

    Article  CAS  PubMed  Google Scholar 

  • Lewis RS, Parker RG, Danehower DA, Andres K, Jack AM, Whitley DS, Bush LP (2012) Impact of alleles at the yellow burley (Yb) loci and nitrogen fertilization rate on nitrogen utilization efficiency and tobacco-specific nitrosamine (TSNA) formation in air-cured tobacco. J Agric Food Chem 60(25):6454–6461

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li X, Duan Y, Zhang K-Q, Yang J (2010) Biotransformation of nicotine by microorganism: the case of Pseudomonas spp. Appl Microbiol Biotechnol 86(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ma G, Chen T, Hou Y, Yang S, Zhang K-Q, Yang J (2015) Nicotine-degrading microorganisms and their potential applications. Appl Microbiol Biotechnol 99(9):3775–3785

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Wei Y, Qiu J, Wen R, Hong J, Liu W (2013) Isolation, transposon mutagenesis, and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. Appl Microbiol Biotechnol 98(6):2625–2636. doi:10.1007/s00253-013-5207-0

    Article  CAS  PubMed  Google Scholar 

  • Meng XJ, Lu LL, Gu GF, Xiao M (2010) A novel pathway for nicotine degradation by Aspergillus oryzae 112822 isolated from tobacco leaves. Res Microbiol 161(7):626–633

    Article  CAS  PubMed  Google Scholar 

  • Middleton LS, Crooks PA, Wedlund PJ, Cass WA, Dwoskin LP (2007) Nornicotine inhibition of dopamine transporter function in striatum via nicotinic receptor activation. Synapse 61(3):157–165

    Article  CAS  PubMed  Google Scholar 

  • Min J, Zhang J-J, Zhou N-Y (2014) The gene cluster for para-nitrophenol catabolism is responsible for 2-chloro-4-nitrophenol degradation in Burkholderia sp. strain SJ98. Appl Environ Microbiol 80(19):6212–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson K, Weinel C, Paulsen I, Dodson R, Hilbert H, Martins dos Santos V, Fouts D, Gill S, Pop M, Holmes M (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4(12):799–808

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Ma Y, Chen L, Wu L, Wen Y, Liu W (2011) A sirA-like gene, sirA2, is essential for 3-succinoyl-pyridine metabolism in the newly isolated nicotine-degrading Pseudomonas sp. HZN6 strain. Appl Microbiol Biotechnol 92(5):1023–1032. doi:10.1007/s00253-011-3353-9

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Ma Y, Wen Y, Chen L, Wu L, Liu W (2012) Functional identification of two novel genes from Pseudomonas sp. strain HZN6 involved in the catabolism of nicotine. Appl Environ Microbiol 78:2154–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Ma Y, Zhang J, Wen Y, Liu W (2013) Cloning of a novel nicotine oxidase gene from Pseudomonas sp. strain HZN6 whose product nonenantioselectively degrades nicotine to pseudooxynicotine. Appl Environ Microbiol 79(7):2164–2171

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Wei Y, Ma Y, Wen R, Wen Y, Liu W (2014) A novel (S)-6-hydroxynicotine oxidase gene from Shinella sp. strain HZN7. Appl Environ Microbiol 80(18):5552–5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Liu M, Wen R, Zhang D, Hong J (2015) Regulators essential for nicotine degradation in Shinella sp. HZN7. Proc Biochem 50(11):1947–1950

    Article  CAS  Google Scholar 

  • Ruan A, Min H, Peng X, Huang Z (2005) Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Res Microbiol 156(5):700–706

    Article  CAS  PubMed  Google Scholar 

  • Schuller HM (2002) Mechanisms of smoking-related lung and pancreatic adenocarcinoma development. Nat Rev Cancer 2(6):455–463

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wang R, Bush LP, Zhou J, Yang H, Fannin N, Bai R (2013) Changes in TSNA contents during tobacco storage and the effect of temperature and nitrate level on TSNA formation. J Agric Food Chem 61(47):11588–11594

    Article  CAS  PubMed  Google Scholar 

  • Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Nat Acad Sci USA 102(41):14919–14924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindelar R, Rosazza J, Barfknecht C (1979) N-demethylation of nicotine and reduction of nicotine-1′-N-oxide by Microsporum gypseum. Appl Environ Microbiol 38(5):836–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sisson VA, Severson R (1990) Alkaloid composition of the Nicotiana species. Contrib Tobacco Res 14(6):327–339

    CAS  Google Scholar 

  • Tang H, Wang L, Wang W, Yu H, Zhang K, Yao Y, Xu P (2013) Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genet 9(10):e1003923. doi:10.1371/journal.pgen.1003923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada E (1956) Microblal degradation of nornicotine. Arch Biochem Biophy 64(1):244–246

    Article  CAS  Google Scholar 

  • Wada E (1957) Microbial degradation of the tobacco alkaloids, and some related compounds. Arch Biochem Biophy 72(1):145–162

    Article  CAS  Google Scholar 

  • Wei X, Deng X, Cai D, Ji Z, Wang C, Yu J, Li J, Chen S (2014) Decreased tobacco-specific nitrosamines by microbial treatment with Bacillus amyloliquefaciens DA9 during the air-curing process of burley tobacco. J Agric Food Chem 62(52):12701–12706

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Qian Y, Boyd JM, Leavey S, Hrudey SE, Krasner SW, Li X-F (2014) Identification of tobacco-specific nitrosamines as disinfection byproducts in chloraminated water. Environ Sci Technol 48(3):1828–1834

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Feng M, Xu G, Xu J, Li S, Chen X, Ding L, Zhou Y (2014) Investigation of the chemical compositions in tobacco of different origins and maturities at harvest by GC–MS and HPLC–PDA-QTOF-MS. J Agric Food Chem 62(22):4979–4987

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Tang H, Li Y, Xu P (2015) Molybdenum-containing nicotine hydroxylase genes in a nicotine degradation pathway that is a variant of the pyridine and pyrrolidine pathways. Appl Environ Microbiol 81(24):8330–8338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwickenpflug W, Meger M, Richter E (1998) Occurrence of the tobacco alkaloid myosmine in nuts and nut products of Arachus hypogaea and Corylus avellana. J Agric Food Chem 46(7):2703–2706

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31500082 and 31422003), China Postdoctoral Science Foundation (No. 2014 M560495), and the Program for New Century Excellent Talents in University (NCET-13-0861).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian He.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Li, N., Lu, Z. et al. Conversion of nornicotine to 6-hydroxy-nornicotine and 6-hydroxy-myosmine by Shinella sp. strain HZN7. Appl Microbiol Biotechnol 100, 10019–10029 (2016). https://doi.org/10.1007/s00253-016-7805-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7805-0

Keywords

Navigation