Skip to main content
Log in

Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this report, redesigning cephalosporin C acylase from the Pseudomonas strain N176 revealed that the loss of stability owing to the introduced mutations at the active site can be recovered by repacking the nearby hydrophobic core regions. Starting from a quadruple mutant M31βF/H57βS/V68βA/H70βS, whose decrease in stability is largely owing to the mutation V68βA at the active site, we employed a computational enzyme design strategy that integrated design both at hydrophobic core regions for stability enhancement and at the active site for activity improvement. Single-point mutations L154βF, Y167βF, L180βF and their combinations L154βF/L180βF and L154βF/Y167βF/L180βF were found to display improved stability and activity. The two-point mutant L154βF/L180βF increased the protein melting temperature (T m) by 11.7 °C and the catalytic efficiency V max/K m by 57 % compared with the values of the starting quadruple mutant. The catalytic efficiency of the resulting sixfold mutant M31βF/H57βS/V68βA/H70βS/L154βF/L180βF is recovered to become comparable to that of the triple mutant M31βF/H57βS/H70βS, but with a higher T m. Further experiments showed that single-point mutations L154βF, L180βF, and their combination contribute no stability enhancement to the triple mutant M31βF/H57βS/H70βS. These results verify that the lost stability because of mutation V68βA at the active site was recovered by introducing mutations L154βF and L180βF at hydrophobic core regions. Importantly, mutation V68βA in the six-residue mutant provides more space to accommodate the bulky side chain of cephalosporin C, which could help in designing cephalosporin C acylase mutants with higher activities and the practical one-step enzymatic route to prepare 7-aminocephalosporanic acid at industrial-scale levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Numbers 21276136, 21476123), and the National High Technology Research and Development (863) Program of China (Grant Number 2012AA021204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Huang, X., Li, Q. et al. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity. Appl Microbiol Biotechnol 101, 621–632 (2017). https://doi.org/10.1007/s00253-016-7796-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7796-x

Keywords

Navigation