Skip to main content
Log in

Directed chromosomal integration and expression of porcine rotavirus outer capsid protein VP4 in Lactobacillus casei ATCC393

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Using two-step plasmid integration in the presence of 5-fluorouracil (5-FU), we developed a stable and markerless Lactobacillus casei strain for vaccine antigen expression. The upp of L. casei, which encodes uracil phosphoribosyltransferase (UPRTase), was used as a counterselection marker. We employed the Δupp isogenic mutant, which is resistant to 5-FU, as host and a temperature-sensitive suicide plasmid bearing upp expression cassette as counterselectable integration vector. Extrachromosomal expression of UPRTase complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. The resultant genotype can either be wild type or recombinant. The efficacy of the system was demonstrated by insertion and expression of porcine rotavirus (PRV) VP4. To improve VP4 expression, we analyzed L. casei transcriptional profiles and selected the constitutive highly expressed enolase gene (eno). The VP4 inserted after the eno termination codon were screened in the presence of 5-FU. Using genomic PCR amplification, we confirmed that VP4 was successfully integrated and stably inherited for at least 50 generations. Western blot demonstrated that VP4 was steadily expressed in medium with different carbohydrates. RT-qPCR and ELISA analysis showed that VP4 expression from the chromosomal location was similar to that achieved by a plasmid expression system. Applying the recombinant strain to immunize BALB/c mice via oral administration revealed that the VP4-expressing L. casei could induce both specific local and systemic humoral immune responses in mice. Overall, the improved gene replacement system represents an efficient method for chromosome recombination in L. casei and provides a safe tool for vaccine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aattour N, Bouras M, Tome D, Marcos A, Lemonnier D (2002) Oral ingestion of lactic-acid bacteria by rats increases lymphocyte proliferation and interferon-gamma production. The Brit J Nutr 87(4):367–373

    Article  PubMed  Google Scholar 

  • Altermann E, Klaenhammer TR (2005) PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics 6:60. doi:10.1186/1471-2164-6-60

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae T, Kozlowicz B, Dunny GM (2002) Two targets in pCF10 DNA for PrgX binding: their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation. J Mol Biol 315(5):995–1007. doi:10.1006/jmbi.2001.5294

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR (2006) Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. PNAS 103(10):3816–3821. doi:10.1073/pnas.0511287103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns JW, Greenberg HB, Shaw RD, Estes MK (1988) Functional and topographical analyses of epitopes on the hemagglutinin (VP4) of the simian rotavirus SA11. J Virol 62(6):2164–2172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Challacombe SJ (1983) Salivary antibodies and systemic tolerance in mice after oral immunization with bacterial antigens. Ann N Y Acad Sci 409:177–193

    Article  CAS  PubMed  Google Scholar 

  • de Vos WM (1999) Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 2(3):289–295. doi:10.1016/S1369-5274(99)80050-2

    Article  PubMed  Google Scholar 

  • Douglas GL, Klaenhammer TR (2011) Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM. AEM 77(20):7365–7371. doi:10.1128/AEM.06028-11

    Article  CAS  Google Scholar 

  • Ehrlich SD, Bruand C, Sozhamannan S, Dabert P, Gros MF, Janniere L, Gruss A (1991) Plasmid replication and structural stability in Bacillus subtilis. Res Microbiol 142(7–8):869–873

    Article  CAS  PubMed  Google Scholar 

  • Fabret C, Ehrlich SD, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Fukagawa T, Hayward N, Yang J, Azzalin C, Griffin D, Stewart AF, Brown W (1999) The chicken HPRT gene: a counter selectable marker for the DT40 cell line. Nucleic Acids Res 27(9):1966–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge J, Jiang Y, Wang M, Qiao X, Liu M, Tang L, Li Y (2009) Induction of immune response after oral inoculation of mice with Lactobacillus casei surface-displayed porcine epidemic diarrhea viral N protein. Sheng Wu Gong Cheng Xue Bao 25(6):813–818

    CAS  PubMed  Google Scholar 

  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(2):259–275. doi:10.1079/NRR200479

    Article  CAS  PubMed  Google Scholar 

  • Goh YJ, Azcarate-Peril MA, O’Flaherty S, Durmaz E, Valence F, Jardin J, Lortal S, Klaenhammer TR (2009) Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. AEM 75(10):3093–3105. doi:10.1128/AEM.02502-08

    Article  CAS  Google Scholar 

  • Gorziglia M, Larralde G, Kapikian AZ, Chanock RM (1990) Antigenic relationships among human rotaviruses as determined by outer capsid protein VP4. PNAS 87(18):7155–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan DJ, Weintraub ST (1985) Platelet-activating factor isolation, identification, and assay. Methods Biochem Anal 31:195–219

    Article  CAS  PubMed  Google Scholar 

  • Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. Cremoris grown with glycine in osmotically stabilized media. AEM 55(12):3119–3123

    CAS  Google Scholar 

  • Hols P, Ferain T, Garmyn D, Bernard N, Delcour J (1994) Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. AEM 60(5):1401–1413

    CAS  Google Scholar 

  • Hoshino Y, Sereno MM, Midthun K, Flores J, Kapikian AZ, Chanock RM (1985) Independent segregation of two antigenic specificities (VP3 and VP7) involved in neutralization of rotavirus infectivity. PNAS 82(24):8701–8704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Yu M, Qiao X, Liu M, Tang L, Jiang Y, Cui W, Li Y (2014) Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus. AMB 98(19):8301–8312. doi:10.1007/s00253-014-5893-2

    CAS  Google Scholar 

  • Johansen K, Svensson L (1997) Neutralization of rotavirus and recognition of immunologically important epitopes on VP4 and VP7 by human IgA. Arch Virol 142(7):1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Kimmel SA, Roberts RF (1998) Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int J F Microbiol 40(1–2):87–92

    Article  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. PNAS 100(4):1990–1995. doi:10.1073/pnas.0337704100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristich CJ, Manias DA, Dunny GM (2005) Development of a method for markerless genetic exchange in Enterococcus faecalis and its use in construction of a srtA mutant. AME 71(10):5837–5849. doi:10.1128/AEM.71.10.5837-5849.2005

    CAS  Google Scholar 

  • Li YJ, Ma GP, Li GW, Qiao XY, Ge JW, Tang LJ, Liu M, Liu LW (2010) Oral vaccination with the porcine rotavirus VP4 outer capsid protein expressed by Lactococcus lactis induces specific antibody production. J Biomed Biotechnol 2010:708460. doi:10.1155/2010/708460

    PubMed  PubMed Central  Google Scholar 

  • Liu D, Wang X, Ge J, Liu S, Li Y (2011) Comparison of the immune responses induced by oral immunization of mice with Lactobacillus casei-expressing porcine parvovirus VP2 and VP2 fused to Escherichia coli heat-labile enterotoxin B subunit protein. Comp Immunol Microbiol Infect Dis 34(1):73–81. doi:10.1016/j.cimid.2010.02.004

    Article  PubMed  Google Scholar 

  • Mackow ER, Vo PT, Broome R, Bass D, Greenberg HB (1990) Immunization with baculovirus-expressed VP4 protein passively protects against simian and murine rotavirus challenge. J Virol 64(4):1698–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MC, Pant N, Ladero V, Gunaydin G, Andersen KK, Alvarez B, Martinez N, Alvarez MA, Hammarstrom L, Marcotte H (2011) Integrative expression system for delivery of antibody fragments by lactobacilli. AEM 77(6):2174–2179. doi:10.1128/AEM.02690-10

    Article  CAS  Google Scholar 

  • Neuhard J, Jensen KF, Stauning E (1982) Salmonella typhimurium mutants with altered expression of the pyrA gene due to changes in RNA polymerase. EMBO J 1(9):1141–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Offit PA, Blavat G (1986) Identification of the two rotavirus genes determining neutralization specificities. J Virol 57(1):376–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Offit PA, Clark HF, Blavat G, Greenberg HB (1986a) Reassortant rotaviruses containing structural proteins vp3 and vp7 from different parents induce antibodies protective against each parental serotype. J Virol 60(2):491–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Offit PA, Shaw RD, Greenberg HB (1986b) Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to surface proteins vp3 and vp7. J Virol 58(2):700–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan DJ, Klaenhammer TR (1993) High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137(2):227–231

    Article  PubMed  Google Scholar 

  • Peck RF, DasSarma S, Krebs MP (2000) Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol 35(3):667–676

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Posno M, Leer RJ, van Luijk N, van Giezen MJ, Heuvelmans PT, Lokman BC, Pouwels PH (1991) Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. AEM 57(6):1822–1828

    CAS  Google Scholar 

  • Pouwels PH, Leunissen JA (1994) Divergence in codon usage of Lactobacillus species. Nucleic Acids Res 22(6):929–36

  • Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. PNAS 101(8):2512–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchett MA, Zhang JK, Metcalf WW (2004) Development of a markerless genetic exchange method for Methanosarcina acetivorans C2A and its use in construction of new genetic tools for methanogenic archaea. AEM 70(3):1425–1433

    Article  CAS  Google Scholar 

  • Qiao X, Li G, Wang X, Li X, Liu M, Li Y (2009) Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. BMC Microbiol 9:249. doi:10.1186/1471-2180-9-249

    Article  PubMed  PubMed Central  Google Scholar 

  • Rush CM, Hafner LM, Timms P (1995) Lactobacilli: vehicles for antigen delivery to the female urogenital tract. Adv Exp Med Biol 371B:1547–1552

    CAS  PubMed  Google Scholar 

  • Song BF, Ju LZ, Li YJ, Tang LJ (2014a) Chromosomal insertions in the Lactobacillus casei upp gene that are useful for vaccine expression. AEM 80(11):3321–3326. doi:10.1128/AEM.00175-14

    Article  Google Scholar 

  • Song L, Cui H, Tang L, Qiao X, Liu M, Jiang Y, Cui W, Li Y (2014b) Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid. J Microbiol Methods 102:37–44. doi:10.1016/j.mimet.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  • Spring KJ, Mattick JS, Don RH (1994) Escherichia coli gpt as a positive and negative selectable marker in embryonal stem cells. BBA 1218(2):158–162

    CAS  PubMed  Google Scholar 

  • Tang L, Li Y (2009) Oral immunization of mice with recombinant Lactococcus lactis expressing porcine transmissible gastroenteritis virus spike glycoprotein. Virus Genes 39(2):238–245. doi:10.1007/s11262-009-0390-x

    Article  CAS  PubMed  Google Scholar 

  • Toh H, Oshima K, Nakano A, Takahata M, Murakami M, Takaki T, Nishiyama H, Igimi S, Hattori M, Morita H (2013) Genomic adaptation of the Lactobacillus casei group. PLoS One 8(10):e75073. doi:10.1371/journal.pone.0075073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):–RESEARCH0034

  • Veiga E, De Lorenzo V, Fernandez LA (2003) Neutralization of enteric coronaviruses with Escherichia coli cells expressing single-chain Fv-autotransporter fusions. J Virol 77(24):13396–13398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186(10):3187–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JM, Mercenier A (2008) Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 6(5):349–362. doi:10.1038/nrmicro1840

    Article  CAS  PubMed  Google Scholar 

  • Xu YG, Cui LC, Ma GP, Tang LJ, Ge JW, Xia CL, Qiao XY, Zhao LL, Li YJ (2007) The surface display of porcine parvovirus VP2 protein in Lactobacillus casei. Sheng Wu Gong Cheng Xue Bao 23(2):315–318

    PubMed  Google Scholar 

  • Xu Y, Cui L, Tian C, Zhang G, Huo G, Tang L, Li Y (2011) Immunogenicity of recombinant classic swine fever virus CD8(+) T lymphocyte epitope and porcine parvovirus VP2 antigen coexpressed by Lactobacillus casei in swine via oral vaccination. Clin Vaccine Immunol 18(11):1979–1986. doi:10.1128/CVI.05204-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Fund of China (Grant No. 31272594).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Gang Xu or Yi-Jing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international and national guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, JY., Guo, CQ., Wang, Z. et al. Directed chromosomal integration and expression of porcine rotavirus outer capsid protein VP4 in Lactobacillus casei ATCC393. Appl Microbiol Biotechnol 100, 9593–9604 (2016). https://doi.org/10.1007/s00253-016-7779-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7779-y

Keywords

Navigation