Skip to main content
Log in

Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aspergillus aculeatus β-glucosidase 1 (AaBGL1) is one of the best cellobiose hydrolytic enzymes without transglycosylation products, among β-glucosidase from various origins, for use in cellulosic biomass conversion with Trichoderma cellulases. However, in our previous report, it was demonstrated that AaBGL1 has lower catalytic efficiency toward cellobiose, which is a major end product from cellulosic biomasses by Trichoderma reesei cellulases, than do gentiobiose and laminaribiose. Thus, we expected that there is room to enhance cellobiose hydrolytic activity of AaBGL1 by increasing catalytic efficiency (k cat/K m) up to that of gentiobiose or laminaribiose for accelerating the saccharification of cellulosic biomasses, and we performed site-saturation mutagenesis targeting nine amino acids supposed to constitute subsite +1 of AaBGL1. We successfully isolated a mutant AaBGL1 (Q201E) having 2.7 times higher k cat/K m toward cellobiose than the WT enzyme. Q201E showed higher activity toward cellotriose and cellotetraose but lower activity toward gentiobiose and laminaribiose than WT. Kinetic analysis of various Q201 mutants toward cellobiose, gentiobiose, and laminaribiose revealed that only the Q201E mutation resulted in improved k cat/K m toward cellobiose. We demonstrated that side chain length and the nondissociated form of the carboxyl group at E201 in Q201E were required for enhancing the activity toward cellooligosaccharides through supporting nucleophile attack by D280 via changing catalytic environment by pH profile of kinetic parameters and mutation analyses. Moreover, we also demonstrated that Q201E produced more effective synergy with cellulases and xylanases than WT in the saccharification of alkaline-pretreated bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agirre J, Ariza A, Offen WA, Turkenburg JP, Roberts SM, McNicholas S, Harris PV, McBrayer B, Dohnalek J, Cowtan KD, Davies GJ, Wilson KS (2016) Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. family GH3 β-D-glucosidases. Acta Crystallogr D Struct Biol 72:254–265. doi:10.1107/S2059798315024237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvaro-Benito M, Polo A, González B, Fernández-Lobato M, Sanz-Aparicio J (2012) Structural and kinetic insights reveal that the amino acid pair Gln-228/Asn-254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, an enzyme that produces prebiotics. J Biol Chem 287:19674–19686. doi:10.1074/jbc.M112.355503

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28:308–324. doi:10.1016/j

    Article  PubMed  Google Scholar 

  • Baba Y, Sumitani J, Tani S, Kawaguchi T (2015) Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system. AMB Express 5:3. doi:10.1186/s13568-014-0090-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann MJ, Borch K, Westh P (2011) Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. Biotechnol Biofuels 4:45. doi:10.1186/1754-6834-4-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohlin C, Olsen SN, Morant MD, Patkar S, Borch K, Westh P (2010) A comparative study of activity and apparent inhibition of fungal β-glucosidases. Biotechnol Bioeng 107:943–952. doi:10.1002/bit.22885

    Article  CAS  PubMed  Google Scholar 

  • Du F, Wolger E, Wallace L, Liu A, Kaper T, Kelemen B (2010) Determination of product inhibition of CBH1, CBH2, and EG1 using a novel cellulase activity assay. Appl Biochem Biotechnol 161:313–317. doi:10.1007/s12010-009-8796-4

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Fang W, Liu J, Hong Y, Peng H, Zhang X, Sun B, Xiao Y (2010) Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol 20:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara M, Sumitani J, Koga S, Yoshioka I, Kouzuma T, Imamura S, Kawaguchi T, Arai M (2007) Alteration of substrate specificity of fructosyl-amino acid oxidase from Fusarium oxysporum. Appl Microbiol Biotechnol 74:813–819. doi:10.1007/s00253-006-0720-z

    Article  CAS  PubMed  Google Scholar 

  • Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36:275–287. doi:10.1002/bit.260360310

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, De Gori R, Smith BJ, Fairweather JK, Driguez H, Varghese JN, Fincher GB (2002) Structural basis for broad substrate specificity in higher plant β-D-glucan glucohydrolases. Plant Cell 14:1033–1052. doi:10.1105/tpc.010442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K, Tani T, Kawai R, Samejima M (2003) Family 3 β-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete cysosporium is a glucan 1,3-β-glucosidase. J Biosci Bioeng 95:572–576. doi:10.1016/S1389-1723(03)80164-0

    Article  CAS  PubMed  Google Scholar 

  • Iwashita K, Todoroki K, Kimura H, Shimoi H, Ito K (1999) The bglA gene of Aspergillus kawachii encodes both extracellular and cell wall-bound β-glucosidases. Appl Environ Micorbiol 65:5546–5553

    CAS  Google Scholar 

  • Karkehabadi S, Helmich KE, Kaper T, Hansson H, Mikkelsen NE, Gudmundsson M, Piens K, Fujdala M, Banerjee G, Scott-Craig JS, Walton JD, Phillips GN Jr, Sandgren M (2014) Biochemical characterization and crystal structures of a fungal family 3 β-glucosidase, Cel3A from Hypocrea jecorina. J Biol Chem 289:31624–31637. doi:10.1074/jbc.M114.587766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi T, Enoki T, Tsurumaki S, Sumitani J, Ueda M, Ooi T, Arai M (1996) Cloning and sequencing of the cDNA encoding β-glucosidase 1 from Aspergillus aculeatus. Gene 173:287–288. doi:10.1016/0378-1119(96)00179-5

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y (2012) Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39:1741–1749. doi:10.1007/s10295-012-1195-9

    Article  CAS  PubMed  Google Scholar 

  • Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N, Kimura A, Tanaka I, Yao M (2008) Structural and functional analysis of a glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron. J Biol Chem 283:36328–36337. doi:10.1074/jbc.M806115200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L (2010) Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol 86:143–154. doi:10.1007/s00253-009-2181-7

    Article  CAS  PubMed  Google Scholar 

  • Langston J, Sheehy N, Xu F (2006) Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochim Biophys Acta 1764:972–978. doi:10.1016/j.bbapap.2006.03.009

    Article  CAS  PubMed  Google Scholar 

  • McAndrew RP, Park JI, Heins RA, Reindl W, Friedland GD, D’haeseleer P, Northen T, Sale KL, Simmons BA, Adams PD (2013) From soil to structure, a novel dimeric β-glucosidase belonging to glycoside hydrolase family 3 isolated from compost using metagenomic analysis. J Biol Chem 288:14985–14992. doi:10.1074/jbc.M113.458356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momeni MH, Ubhayasekera W, Sandgren M, Ståhlberg J, Hansson H (2015) Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo-oligosaccharides. FEBS J 282:2167–2177. doi:10.1111/febs.13265

    Article  PubMed  Google Scholar 

  • Montero MA, Romeu A (1992) Kinetic study on the β-glucosidase-catalyzed reaction of Trichoderma viride cellulase. Appl Microbiol Biotechnol 38:350–353. doi:10.1007/BF00170085

    Article  CAS  Google Scholar 

  • Murao S, Kanamoto J, Arai M (1979) Isolation and identification of a cellulolytic enzyme producing microorganism. J Ferment Technol 57:151–156

    CAS  Google Scholar 

  • Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, Kato R (2007) Structural basis of the catalytic reaction mechanism of novel 1,2-α-L-fucosidase from Bifidobacterium bifidum. J Biol Chem 282:18497–18509. doi:10.1074/jbc.M702246200

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Yamashita T, Takahashi M, Nakano Y, Takeda T (2012) Identification, cloning, and characterization of β-glucosidase from Ustilago esculenta. Appl Microbiol Biotechnol 93:1989–1998. doi:10.1007/s00253-011-3538-2

    Article  CAS  PubMed  Google Scholar 

  • Nakatani Y, Lamont IL, Cutfield JF (2010) Discovery and characterization of a distinctive exo-1,3/1,4-β-glucanase from the marine bacterium Pseudoalteromonas sp. strain BB1. Appl Environ Microbiol 76:6760–6768. doi:10.1128/AEM.00758-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatani Y, Cutfield JF, Cowieson NP, Cutfield JF (2011) Structure and activity of exo-1,3/1,4-β-glucanase from marine bacterium Pseudoalteromonas sp. strain BB1 showing a novel C-terminal domain. FEBS J 76:6760–6768. doi:10.1111/j.1742-4658.2011.08439.x

    Google Scholar 

  • Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W (2012) Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnol Bioeng 109:92–99. doi:10.1002/bit.23296

    Article  CAS  PubMed  Google Scholar 

  • Oh KK, Kim SW, Jeong YS, Hong SI (2000) Bioconversion of cellulose into ethanol by nonisothermal simultaneous saccharification and fermentation. Appl Biochem Biotechnol 89:15–30

    Article  CAS  PubMed  Google Scholar 

  • Pozzo T, Linares P, Karlsson EN, Logan DT (2010) Structural and functional analysis of β-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. J Mol Biol 397:724–739. doi:10.1016/j.jmb.2010.01.072

    Article  CAS  PubMed  Google Scholar 

  • Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y (2009) Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters. Appl Microbiol Biotechnol 82:899–908. doi:10.1007/s00253-008-1841-3

    Article  CAS  PubMed  Google Scholar 

  • Ramani G, Meera B, Vanitha C, Rajendhran J, Gunasekaran P (2015) Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J Ind Microbiol Biotechnol 42:553–565. doi:10.1007/s10295-014-1549-6

    Article  CAS  PubMed  Google Scholar 

  • Rana V, Eckard AD, Teller P, Ahring BK (2014) On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour Technol 154:282–289. doi:10.1016/j.biortech.2013.12.059

    Article  CAS  PubMed  Google Scholar 

  • Riou C, Salmon JM, Vallier MJ, Günata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto R, Arai M, Murao S (1985a) Purification and physicochemical properties of three β-glucosidases from Aspergillus aculeatus No. F-50. Agric Biol Chem 49:1275–1281. doi:10.1080/00021369.1985.10866914

    CAS  Google Scholar 

  • Sakamoto R, Arai M, Murao S (1985b) Enzymic properties of three β-glucosidases from Aspergillus aculeatus No F-50. Agric Biol Chem 49:1283–1290. doi:10.1080/00021369.1985.10866915

    CAS  Google Scholar 

  • Seidle HF, Marten I, Shoseyov O, Huber RE (2004) Physical and kinetic properties of the family 3 β-glucosidase from Aspergillus niger which is important for cellulose breakdown. Protein J 23:11–23

    Article  CAS  PubMed  Google Scholar 

  • Silveira RL, Skaf MS (2015) Molecular dynamics simulations of family 7 cellobiohydrolase mutants aimed at reducing product inhibition. J Phys Chem B 119:9295–9303. doi:10.1021/jp509911m

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Sumitani J, Nam YW, Nishimaki T, Tani S, Wakagi T, Kawaguchi T, Fushinobu S (2013) Crystal structure of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus. Biochem J 452:211–221. doi:10.1042/BJ20130054

    Article  CAS  PubMed  Google Scholar 

  • Takada G, Kawaguchi T, Sumitani J, Arai M (1998) Expression of Aspergillus aculeatus No. F-50 cellobiohydrolase I (cbhI) and β-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 62:1615–1618. doi:10.1271/bbb.62.1615

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Konishi T, Takeda T (2011) Biochemical characterization of Magnaporthe oryzae β-glucosidases for efficient β-glucan hydrolysis. Appl Microbiol Biotechnol 91:1073–1082. doi:10.1007/s00253-011-3340-1

    Article  CAS  PubMed  Google Scholar 

  • Thongpoo P, McKee LS, Araújo AC, Kongsaeree PT, Brumer H (2013) Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) β-glucosidase from Aspergillus niger ASKU28. Biochim Biophys Acta 1830:2739–2749. doi:10.1016/j.bbagen.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  • Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M (2012) Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant β-glucosidase from the termite Nasutitermes takasagoensis. Appl Environ Microbiol 78:4288–4293. doi:10.1128/AEM.07718-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama T, Miyazaki K, Yaoi K (2013) Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J Biol Chem 288:18325–18334. doi:10.1074/jbc.M113.471342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama T, Yaoi K, Miyazaki K (2015) Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome. Front Microbiol 6:548. doi:10.3389/fmicb.2015.00548

    Article  PubMed  PubMed Central  Google Scholar 

  • Varghese JN, Hrmova M, Fincher GB (1999) Three-dimensional structure of a barley β-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 7:179–190. doi:10.1016/S0969-2126(99)80024-0

    Article  CAS  PubMed  Google Scholar 

  • Yan TR, Lin CL (1997) Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem 61:965–970. doi:10.1271/bbb.61.965

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Yang X, Li Z, Du C, Wang J, Li S (2015) Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl Microbiol Biotechnol 99:8903–8915. doi:10.1007/s00253-015-6619-9

    Article  CAS  PubMed  Google Scholar 

  • Yoshida E, Hidaka M, Fushinobu S, Koyanagi T, Minami H, Tamaki H, Kitaoka M, Katayama T, Kumagai H (2010) Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus. Biochem J 431:39–49. doi:10.1042/BJ20100351

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 121:8–12. doi:10.1016/j.biortech.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  • Zmudka MW, Thoden JB, Holden HM (2013) The structure of DesR from Streptomyces venezuelae, a β-glucosidase involved in macrolide activation. Protein Sci 22:883–892. doi:10.1002/pro.2204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Wataru Ogasawara and Dr. Yousuke Shida from Nagaoka University of Technology for providing cellulase from T. reesei PC-3-7. This work was financially supported by The New Energy and Industrial Technology Development Organization (P13011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Sumitani.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interests.

Authors’ contributions

YB performed most of the experiments, analyzed data, and drafted manuscript. JS conceived the study, designed the experiments, critically analyzed data, and revised manuscript. KT supported experiments of purification enzymes and a part of HPAEC-PAD analysis for supplemental figures. ST performed experiments for DNA manipulation and gene expression. TK designed the experiments, critically analyzed data, and revised manuscript. All authors read and approved the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, Y., Sumitani, Ji., Tanaka, K. et al. Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse. Appl Microbiol Biotechnol 100, 10495–10507 (2016). https://doi.org/10.1007/s00253-016-7726-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7726-y

Keywords

Navigation