Skip to main content
Log in

Insights into the functionality and stability of designer cellulosomes at elevated temperatures

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium Clostridium thermocellum. The scaffoldin was combined with four thermophilic enzymes from Geobacillus and Caldicellulosiruptor species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Anand A, Kumar V, Satyanarayana T (2013) Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 17:357–366

    Article  CAS  PubMed  Google Scholar 

  • Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. PNAS 111:9109–9114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artzi L, Dassa B, Borovok I, Shamshoum M, Lamed R, Bayer EA (2014) Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnol Biofuels 7:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Ann Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technol 128:751–759

    Article  CAS  Google Scholar 

  • Bhalla A, Bischoff KM, Sani RK (2014) Highly thermostable GH39 ss-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnol 14:106

    Article  Google Scholar 

  • Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Canakci S, Cevher Z, Inan K, Tokgoz M, Bahar F, Kacagan M, Sal FA, Belduz AO (2012) Cloning, purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp. 71. World J Microbiol Biotechnol 28:1981–1988

    Article  CAS  PubMed  Google Scholar 

  • Caspi J, Irwin D, Lamed R, Li Y, Fierobe H-P, Wilson DB, Bayer EA (2008) Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 135:351–357

    Article  CAS  PubMed  Google Scholar 

  • Contreras LM, Gómez J, Prieto J, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodríguez-Vico F, Blanco FJ, Neira JL (2008) The family 52 β-xylosidase from Geobacillus stearothermophilus is a dimer: structural and biophysical characterization of a glycoside hydrolase. BBA - Proteins Proteom 1784:1924–1934

    Article  CAS  Google Scholar 

  • Ding S-Y, Bayer EA, Steiner D, Shoham Y, Lamed R (2000) A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J Bacteriol 182:4915–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S-Y, Rincon MT, Lamed R, Martin JC, McCrae SI, Aurilia V, Shoham Y, Bayer EA, Flint HJ (2001) Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183:1945–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierobe H-P, Mingardon F, Mechaly A, Bélaïch A, Rincon MT, Pagès S, Lamed R, Tardif C, Bélaïch J-P, Bayer EA (2005) Action of designer cellulosomes on homogeneous versus complex substrates. J Biol Chem 280:16325–16334

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Se D, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp. 571–607

  • Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R, Bayer EA (2008) Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–979

    Article  CAS  PubMed  Google Scholar 

  • Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresource Technol 169:742–749

    Article  CAS  Google Scholar 

  • Hong M-R, Kim Y-S, Park C-S, Lee J-K, Kim Y-S, Oh D-K (2009) Characterization of a recombinant β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. J Biosci Bioeng 108:36–40

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Liu X, Zhang S, Liu Z (2014) GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509. J Ind Microbiol Biotechnol 41:65–74

    Article  CAS  PubMed  Google Scholar 

  • Hussein AH, Lisowska BK, Leak DJ (2015) The genus Geobacillus and their biotechnological potential. In: Sima S, Geoffrey Michael G (eds) Advances in applied microbiology, vol 92. Academic Press, Cambridge, MA, pp. 1–48

    Google Scholar 

  • Izquierdo JA, Goodwin L, Davenport KW, Teshima H, Bruce D, Detter C, Tapia R, Han S, Land M, Hauser L, Jeffries CD, Han J, Pitluck S, Nolan M, Chen A, Huntemann M, Mavromatis K, Mikhailova N, Liolios K, Woyke T, Lynd LR (2012) Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci 6:104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam K, Chin C, Brown L (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn Stover. J Ind Microbiol Biotechnol 35:331–341

    Article  CAS  PubMed  Google Scholar 

  • Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155:283–289

    Article  CAS  PubMed  Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Zhang N, Zhao C, Lin B, Xie L, Huang Y (2012) Characterization of a recombinant thermostable xylanase from hot spring thermophilic Geobacillus sp. TC-W7. J Microbiol Biotechnol 22:1388–1394

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nature Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  • McClendon SD, Mao Z, Shin H-D, Wagschal K, Chen RR (2012) Designer xylanosomes: protein nanostructures for enhanced xylan hydrolysis. Appl Biochem Biotechnol 167:395–411

    Article  CAS  PubMed  Google Scholar 

  • McMillan J, Jennings E, Mohagheghi A, Zuccarello M (2011) Comparative performance of precommercial cellulases hydrolyzing pretreated corn Stover. Biotechnol Biofuels 4:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullan G, Christie J, Rahman T, Banat I, Ternan N, Marchant R (2004) Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochem Soc Trans 32:214–217

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energ Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  • Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y (1995) Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61:1980–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 1:00285–00210

    Article  Google Scholar 

  • Moraïs S, Barak Y, Hadar Y, Wilson DB, Shoham Y, Lamed R, Bayer EA (2011) Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. mBio 2:00233–00211

    Article  Google Scholar 

  • Moraïs S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2012) Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. mBio 3:00508–00512

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. Nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    Article  CAS  PubMed  Google Scholar 

  • Ng IS, Li C-W, Yeh Y-F, Chen P, Chir J-L, Ma C-H, Yu S-M, Ho T-H, Tong C-G (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13:425–435

    Article  CAS  PubMed  Google Scholar 

  • Ratnadewi A, Fanani M, Kurniasih S, Sakka M, Wasito E, Sakka K, Nurachman Z, Puspaningsih N (2013) β-d-xylosidase from Geobacillus thermoleovorans IT-08: biochemical characterization and bioinformatics of the enzyme. Appl Biochem Biotechnol 170:1950–1964

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana T, Sharma A, Mehta D, Puri A, Kumar V, Nisha M, Joshi S (2012) Biotechnological applications of biocatalysts from the firmicutes Bacillus and Geobacillus species. In: Satyanarayana T, Johri BN (eds) Microorganisms in sustainable agriculture and biotechnology. Springer Netherlands, Dordrecht, pp. 343–379

    Chapter  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675

    Article  CAS  Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Biores Technol 101:1570–1580

    Article  CAS  Google Scholar 

  • Singh S, Heng C, Braker J, Chan V, Lee C, Jordan D, Yuan L, Wagschal K (2014) Directed evolution of GH43 β-xylosidase XylBH43 thermal stability and L186 saturation mutagenesis. J Ind Microbiol Biotechnol 41:489–498

    Article  CAS  PubMed  Google Scholar 

  • Stathopoulou PM, Galanopoulou AP, Anasontzis GE, Karagouni AD, Hatzinikolaou DG (2012) Assessment of the biomass hydrolysis potential in bacterial isolates from a volcanic environment: biosynthesis of the corresponding activities. World J Microbiol Biotechnol 28:2889–2902

    Article  CAS  PubMed  Google Scholar 

  • Stern J, Kahn A, Vazana Y, Shamshoum M, Moraïs S, Lamed R, Bayer EA (2015) Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis. PLoS One 10:e0127326

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  PubMed  Google Scholar 

  • Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer E (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 510:429–452

    Article  CAS  PubMed  Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. In: Olsson L (ed) Biofuels, vol 108. Advances in biochemical engineering/biotechnology. Springer Berlin, Heidelberg, pp. 121–145

    Google Scholar 

  • Xu Q, Gao W, Ding S-Y, Kenig R, Shoham Y, Bayer EA, Lamed R (2003) The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol 185:4548–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y (1995) Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 360:121–124

    Article  CAS  PubMed  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IKO (2010) Chapter 1—thermostable enzymes as biocatalysts in the biofuel industry. In: Laskin A, Gadd G, Sariaslani S (eds) Advances in applied microbiology, Academic Press, vol 70. Cambridge, MA, pp. 1–55

    Chapter  Google Scholar 

  • Zhang YHP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29:715–725

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by: (i) The European Union (European Social Fund—ESF) and Greek National funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program “Excellence II (Aristeia II)”, Grant No. 4641 “Engineering advanced biocatalysts for the conversion of lignocellulosic biomass into fermentable sugars (ABCAT)”. (ii) The European Union, Area NMP.2013.1.1-2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530. (iii) Grant (No. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel. (iv) Grant from the US-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris G. Hatzinikolaou.

Ethics declarations

This article does not involve any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanopoulou, A.P., Moraïs, S., Georgoulis, A. et al. Insights into the functionality and stability of designer cellulosomes at elevated temperatures. Appl Microbiol Biotechnol 100, 8731–8743 (2016). https://doi.org/10.1007/s00253-016-7594-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7594-5

Keywords

Navigation