Skip to main content
Log in

The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The hydrolysis of xylans, one of the main classes of carbohydrates that constitute lignocellulosic biomass, requires the synergistic action of several enzymes. The development of efficient enzymatic strategies for hydrolysis remains a challenge in the pursuit of viable biorefineries, particularly with respect to the valorisation of pentoses. The approach developed in this work is based on obtaining and characterising hemicellulasic cocktails from Thermobacillus xylanilyticus after culturing this bacterium on the hemicellulose-rich substrates wheat bran and wheat straw, which differ in their chemistries. The two obtained cocktails (WSC and WBC, for cocktails obtained from wheat straw and wheat bran, respectively) were resistant to a broad range of temperature and pH conditions. At 60 °C, both cocktails efficiently liberated pentoses and phenolic acids from wheat bran (liberating more than 60, 30 and 40 % of the total xylose, arabinose and ferulic acid in wheat bran, respectively). They acted to a lesser extent on the more recalcitrant wheat straw, with hydrolytic yields of more than 30 % of the total arabinose and xylose content and 22 % of the ferulic acid content. Hydrolysis is associated with a high rate of sugar monomerisation. When associated with cellulases, high quantities of glucose were also obtained. On wheat bran, total glucose yields were improved by 70 % compared to the action of cellulases alone. This improvement was obtained by cellulase complementation either with WSC or with WBC. On wheat straw, similar levels of total glucose were obtained for cellulases alone or complemented with WSC or WBC. Interestingly, the complementation of cellulases with WSC or WBC induced an increase in the monomeric glucose yield of more than 20 % compared to cellulases alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adav SS, Ng CS, Arulmani M, Sze SK (2010) Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res 9:3016–3024. doi:10.1021/pr901174z

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Negro MJ, Ballesteros M (2011) Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Biores Technol 102:4552–4558. doi:10.1016/j.biortech.2010.12.112

    Article  CAS  Google Scholar 

  • Apprich S, Tirpanalan O, Hell J, Reisinger M, Bohmdorfer S, Siebenhandl-Ehn S, Novalin S, Kneifel W (2014) Wheat bran-based biorefinery 2: valorization of products. LWT-Food Sci Technol 56:222–231. doi:10.1016/j.lwt.2013.12.003

    Article  CAS  Google Scholar 

  • Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Aslam N, Walton JD (2010) Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set. Biotechnol Bioeng 106:707–720. doi:10.1002/bit.22741

    Article  CAS  PubMed  Google Scholar 

  • Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Kosugi A, Ratanakhanokchai K (2015) Alkaline xylanolytic-cellulolytic multienzyme complex from the novel anaerobic alkalithermophilic bacterium Cellulosibacter alkalithermophilus and its hydrolysis of insoluble polysaccharides under neutral and alkaline conditions. Process Biochem 50:643–650. doi:10.1016/j.procbio.2015.01.019

    Article  CAS  Google Scholar 

  • Beaugrand J, Croner D, Debeire P, Chabbert B (2004) Arabinoxylan and hydroxycinnamate content of wheat bran in relation to endoxylanase susceptibility. J Cereal Sci 40:223–230

    Article  CAS  Google Scholar 

  • Bergdale TE, Hughes SR, Bang SS (2014) Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake gold mine in Lead, South Dakota. Appl Biochem Biotechnol 172:3488–3501. doi:10.1007/s12010-014-0784-7

    Article  CAS  PubMed  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Biores Technol 128:751–759. doi:10.1016/j.biortech.2012.10.145

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Collins SRA, Wellner N, Bordonado IM, Harper AL, Miller CN, Bancroft I, Waldron KW (2014) Variation in the chemical composition of wheat straw: the role of tissue ratio and composition. Biotechnol Biofuels 7:121. doi:10.1186/s13068-014-0121-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Debeche T, Cummings N, Connerton I, Debeire P, O'Donohue MJ (2000) Genetic and biochemical characterization of a highly thermostable α-L-arabinofuranosidase from Thermobacillus xylanilyticus. Appl Environ Microbiol 66:1734–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debeire P, Delalande F, Habrylo O, Jeltsch J-M, Van Dorsselaer A, Phalip V (2014) Enzymatic cocktails produced by Fusarium graminearum under submerged fermentation using different lignocellulosic biomasses. FEMS Microbiol Lett 355:116–123. doi:10.1111/1574-6968.12467

    Article  CAS  PubMed  Google Scholar 

  • Deutschmann R, Dekker RFH (2012) From plant biomass to bio-based chemicals: Latest developments in xylan research. Biotechnol Adv 30:1627–1640. doi:10.1016/j.biotechadv.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  • Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. Global Change Biol Bioenergy 1:2–17

    Article  CAS  PubMed  Google Scholar 

  • Gao DH, Uppugundla N, Chundawat SPS, Yu XR, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale BE (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5. doi:10.1186/1754-6834-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladden JM, Allgaier M, Miller CS, Hazen TC, VanderGheynst JS, Hugenholtz P, Simmons BA, Singer SW (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77:5804–5812. doi:10.1128/aem.00032-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladden JM, Park JI, Bergmann J, Reyes-Ortiz V, D'Haeseleer P, Quirino BF, Sale KL, Simmons BA, Singer SW (2014) Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a swithchgrass-adapted microbial community. Biotechnol Biofuels 7:15. doi:10.1186/1754-6834-7-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottschalk LMF, Oliveira RA, Bon EPD (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78. doi:10.1016/j.bej.2010.05.003

    Article  CAS  Google Scholar 

  • Gruninger RJ, Gong X, Forster RJ, McAllister TA (2014) Biochemical and kinetic characterization of the multifunctional β-glucosidase/β-xylosidase/α-arabinosidase, Bgxa1. Appl Microbiol Biotechnol 98:3003–3012. doi:10.1007/s00253-013-5191-4

    Article  CAS  PubMed  Google Scholar 

  • Harris GW, Pickersgill RW, Connerton I, Debeire P, Touzel J-P, Breton C, Perez S (1997) Structural basis of the properties of an industrially relevant thermophilic xylanase. Proteins 29:77–86

    Article  CAS  PubMed  Google Scholar 

  • Hinz SWA, Pouvreau L, Joosten R, Bartels J, Jonathan MC, Wery J, Schols HA (2009) Hemicellulase production in Chrysosporium lucknowense C1. J Cereal Sci 50:318–323. doi:10.1016/j.jcs.2009.07.005

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36. doi:10.1186/1754-6834-4-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izydorczyk MS, MacGregor AW (2000) Evidence of intermolecular interactions of β-glucans and arabinoxylans. Carbohyd Polym 41:417–420. doi:10.1016/s0144-8617(99)00151-4

    Article  CAS  Google Scholar 

  • Kidby DK, Davidson DJ (1973) A convenient ferricyanide estimation of reducing sugars in the nanomole range. Anal Biochem 55:321–325

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375. doi:10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  • Kracher D, Oros D, Yao W, Preims M, Rezic I, Haltrich D, Rezic T, Ludwig R (2014) Fungal secretomes enhance sugar beet pulp hydrolysis. Biotechnol J 9:483–492. doi:10.1002/biot.201300214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lequart C, Nuzillard JM, Kurek B, Debeire P (1999) Hydrolysis of wheat bran and straw by an endoxylanase: production and structural characterization of cinnamoyl-oligosaccharides. Carb Res 319:102–111

    Article  CAS  Google Scholar 

  • Liao H, Xu C, Tan S, Wei Z, Ling N, Yu G, Raza W, Zhang R, Shen Q, Xu Y (2012) Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2. Biores Technol 123:117–124. doi:10.1016/j.biortech.2012.07.051

    Article  CAS  Google Scholar 

  • Maijala P, Kango N, Szijarto N, Viikari L (2012) Characterization of hemicellulases from thermophilic fungi. Antonie Van Leeuwenhoek 101:905–917. doi:10.1007/s10482-012-9706-2

    Article  CAS  PubMed  Google Scholar 

  • McClendon SD, Batth T, Petzold CJ, Adams PD, Simmons BA, Singer SW (2012) Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels 5:54. doi:10.1186/1754-6834-5-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parajuli R, Dalgaard T, Jorgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjorring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sust Energ Rev 43:244–263. doi:10.1016/j.rser.2014.11.041

    Article  CAS  Google Scholar 

  • Poidevin L, Berrin J-G, Bennati-Granier C, Levasseur A, Herpoel-Gimbert I, Chevret D, Coutinho PM, Henrissat B, Heiss-Blanquet S, Record E (2014) Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Appl Microbiol Biotechnol 98:7457–7469. doi:10.1007/s00253-014-5698-3

    Article  CAS  PubMed  Google Scholar 

  • Prueckler M, Siebenhandl-Ehn S, Apprich S, Hoeltinger S, Haas C, Schmid E, Kneifel W (2014) Wheat bran-based biorefinery 1: composition of wheat bran and strategies of functionalization. LWT-Food Sci Technol 56:211–221. doi:10.1016/j.lwt.2013.12.004

    Article  CAS  Google Scholar 

  • Rakotoarivonina H, Hermant B, Chabbert B, Touzel J-P, Remond C (2011) A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Biochem Biotechnol 90:541–552. doi:10.1007/s00253-011-3103-z

    CAS  Google Scholar 

  • Rakotoarivonina H, Hermant B, Monthe N, Remond C (2012) The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Factories 11:159. doi:10.1186/1475-2859-11-159

    Article  CAS  Google Scholar 

  • Rakotoarivonina H, Hermant B, Aubry N, Rabenoelina F, Baillieul F, Remond C (2014) Dynamic study of how the bacterial breakdown of plant cell walls allows the reconstitution of efficient hemicellulasic cocktails. Bioresource Technol 170:331–341. doi:10.1016/j.biortech.2014.07.097

    Article  CAS  Google Scholar 

  • Ralet M-C, Faulds C, Williamson G, Thibault J-F (1994) Degradation of feruloylated oligosaccharides from sugar-beet pulp and wheat bran by ferulic acid esterases from Aspergillus niger. Carb Res 263:257–269

    Article  CAS  Google Scholar 

  • Remond C, Aubry N, Cronier D, Noel S, Martel F, Roge B, Rakotoarivonina H, Debeire P, Chabbert B (2010) Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw. Biores Technol 101:6712–6717

    Article  CAS  Google Scholar 

  • Samain E, Debeire P, Touzel JP (1997) High level production of a cellulase-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J Biotechnol 58:71–78

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Herrera LM, Ramos-Valdivia AC, de la Torre M, Salgado LM, Ponce-Noyola T (2007) Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources. Appl Biochem Biotechnol 77:589–595. doi:10.1007/s00253-007-1190-7

    CAS  Google Scholar 

  • Sharma R, Rawat R, Bhogal RS, Oberoi HS (2015) Multi-component thermostable cellulolytic enzyme production by Aspergillus niger HN-1 using pea pod waste: appraisal of hydrolytic potential with lignocellulosic biomass. Process Biochem 50:696–704. doi:10.1016/j.procbio.2015.01.025

    Article  CAS  Google Scholar 

  • Su XY, Han YJ, Dodd D, Moon YH, Yoshida S, Mackie RI, Cann IKO (2013) Reconstitution of a thermostable xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii. Appl Biochem Biotechnol 79:1481–1490. doi:10.1128/aem.03265-12

    CAS  Google Scholar 

  • Touzel J-P, O'Donohue M, Debeire P, Samain E, Breton C (2000) Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 50:315–320

    Article  CAS  PubMed  Google Scholar 

  • van den Brink J, Maitan-Alfenas GP, Zou G, Wang C, Zhou Z, Guimaraes VM, de Vries RP (2014) Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse. Biotechnol J 9:1329–1338. doi:10.1002/biot.201400317

    Article  PubMed  Google Scholar 

  • Varnai A, Siika-aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enz Microbiol Technol 46:185–193. doi:10.1016/j.enzmictec.2009.12.013

    Article  CAS  Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanperae J, Siika-aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Biofuels 108:121–145. doi:10.1007/10_2007_065

    Article  CAS  Google Scholar 

  • Viikari L, Vehmaanpera J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenerg 46:13–24. doi:10.1016/j.biombioe.2012.05.008

    Article  CAS  Google Scholar 

  • Xin DL, Sun ZP, Viikari L, Zhang JH (2015) Role of hemicellulases in production of fermentable sugars from corn stover. Ind Crop Prod 74:209–217. doi:10.1016/j.indcrop.2015.05.017

    Article  CAS  Google Scholar 

  • Zeng J, Helms GL, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem 20(61):10848–10857. doi:10.1021/jf4030486

    Article  Google Scholar 

  • Zhang J, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Biores Technol 121:8–12. doi:10.1016/j.biortech.2012.07.010

    Article  CAS  Google Scholar 

  • Zhang K, Chen X, Schwarz WH, Li F (2014) Synergism of glycoside hydrolase secretomes from two thermophilic bacteria cocultivated on lignocellulose. Appl Biochem Biotechnol 80:2592–2601. doi:10.1128/aem.00295-14

    Google Scholar 

  • Zhang Y, Pitkanen L, Douglade J, Tenkanen M, Remond C, Joly C (2011) Wheat bran arabinoxylans: chemical structure and film properties of three isolated fractions. Carbohyd Polym 86:852–859. doi:10.1016/j.carbpol.2011.05.036

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Melissa Ferdjaoui for her technical assistance in the activity measurements and Nerea Perez for her help with the supplementation experiments. We thank D. Cronier for analysing phenolic esters composition of wheat bran and wheat straw by HPLC. This work was supported by a grant from the Reims Champagne-Ardenne University during the PhD of Revol Pierre-Vincent and was partly funded by the programme AIC Comba of the French National Institute for Agricultural Research (INRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harivony Rakotoarivonina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakotoarivonina, H., Revol, PV., Aubry, N. et al. The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules. Appl Microbiol Biotechnol 100, 7577–7590 (2016). https://doi.org/10.1007/s00253-016-7562-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7562-0

Keywords

Navigation