Skip to main content
Log in

Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The microbial biocenosis in highly saline fluids produced from the cold well of a deep geothermal heat store located in the North German Basin was characterized during regular plant operation and immediately after plant downtime phases. Genetic fingerprinting revealed the dominance of sulfate-reducing bacteria (SRB) and fermentative Halanaerobiaceae during regular plant operation, whereas after shutdown phases, sequences of sulfur-oxidizing bacteria (SOB) were also detected. The detection of SOB indicated oxygen ingress into the well during the downtime phase. High 16S ribosomal RNA (rRNA) and dsrA gene copy numbers at the beginning of the restart process showed an enrichment of bacteria, SRB, and SOB during stagnant conditions consistent with higher concentrations of dissolved organic carbon (DOC), sulfate, and hydrogen sulfide in the produced fluids. The interaction of SRB and SOB during plant downtimes might have enhanced the corrosion processes occurring in the well. It was shown that scale content of fluids was significantly increased after stagnant phases. Moreover, the sulfur isotopic signature of the mineral scales indicated microbial influence on scale formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul S, Gish W, Miller W (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Amend J, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol 219:131–155

    Article  Google Scholar 

  • Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943

    Article  Google Scholar 

  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, Desantis TZ, Gihring TM, Lapidus A, Lin L, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278

    Article  CAS  PubMed  Google Scholar 

  • Choi YC, Morgenroth E (2003) Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci Technol 47:69–76

    CAS  PubMed  Google Scholar 

  • Corsi R (1986) Scaling and corrosion in geothermal equipment: problems and preventive measures. Geothermics 15:839–856

    Article  CAS  Google Scholar 

  • Dahle H, Garshol F, Madsen M, Birkeland N-K (2008) Microbial community structure analysis of produced water from a high-temperature north sea oil-field. Antonie Van Leeuwenhoek 93:37–49

    Article  PubMed  Google Scholar 

  • Dillon JG (2011) The role of sulfate reduction in stromatolites and microbial mats: ancient and modern perspectives. In: Tewari V, Seckbach J (eds) STROMATOLITES interaction microbes with sediments. Springer Netherlands, Dordrecht, pp. 571–590

    Chapter  Google Scholar 

  • DIN 1343 (1990) 01 reference conditions, normal conditions, normal value; concepts and values. Deutsches Institut für Normung, Berlin, Germany

    Google Scholar 

  • DIN EN ISO 17294-2 (2005) 02 German standard methods for the examination of water, waste water and sludge - cations (group E)—part 29: determination of 61 elements by inductively coupled plasma mass spectrometry (ICP-MS) (E 29). Deutsches Institut für Normung, Berlin, Germany

    Google Scholar 

  • DIN EN ISO 10304-1 (2009) 07 Water quality—determination of dissolved anions by liquid chromatography of ions—part 1: determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate (ISO 10304-1:2007). Deutsches Institut für Normung, Berlin, Germany

    Google Scholar 

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Fichter C, Falcone G, Reinicke KM, Teodoriu C (2011) Probabilistic analysis of failure risk in the primary geothermal cycle. Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, California

    Google Scholar 

  • Gallup DL (2009) Production engineering in geothermal technology: a review. Geothermics 38:326–334

    Article  Google Scholar 

  • Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshw Biol 54:649–677

    Article  Google Scholar 

  • Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217

    Article  CAS  PubMed  Google Scholar 

  • Holser W (1977) Catastrophic chemical events in the history of the ocean. Nature 267:403–408

    Article  CAS  Google Scholar 

  • Houben GJ, Weihe U (2010) Spatial distribution of incrustations around a water well after 38 years of use. Groundwater 48:53–58

    Article  CAS  Google Scholar 

  • Howsam P (1988) Biofouling in wells and aquifers. Water Environ J 2:209–215

    Article  Google Scholar 

  • Huber S, Frimmel F (1996) Size-exclusion chromatography with organic carbon detection (LC-OCD): a fast and reliable method for the characterization of hydrophilic organic matter. Vom Wasser 86:277–290

    CAS  Google Scholar 

  • Jakobsen TF, Kjeldsen KU, Ingvorsen K (2006) Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. Int J Syst Evol Microbiol 56:2063–9

  • Javaherdashti R (2008) Microbiologically influenced corrosion: an engineering insight. Springer, London

    Google Scholar 

  • Javaherdashti R (2011) Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl Microbiol Biotechnol 91:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Kabus F, Wolfgramm M (2009) Aquifer thermal energy storage in Neubrandenburg—monitoring throughout three years of regular operation. Proc. of the 11th Intern. Conf. on Energy Storage. Stockholm, Sweden.

  • Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K (2007) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60:287–298

    Article  CAS  PubMed  Google Scholar 

  • Kjellerup BV, Olesen BH, Nielsen JL, Frolund B, Odum S, Nielsen PH (2003) Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Water Sci technol 47:117–122

    CAS  PubMed  Google Scholar 

  • Kodama Y, Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54:2297–2300

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Lewandowski Z, Nielsen P, Hamilton W (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194

    Article  CAS  Google Scholar 

  • Lerm S, Alawi M, Miethling-Graff R, Seibt A, Wolfgramm M, Rauppach K, Würdemann H (2011a) Mikrobiologisches monitoring in zwei geothermisch genutzten aquiferen des norddeutschen beckens microbiological monitoring of two geothermally used aquifers in the North German Basin. Zeitschr Geol Wiss 39:195–212

    Google Scholar 

  • Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011b) Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime. Grundwasser 16:93–104

    Article  Google Scholar 

  • Lerm S, Westphal A, Miethling-Graff R, Alawi M, Seibt A, Wolfgramm M, Würdemann H (2013) Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 17:311–327

    Article  CAS  PubMed  Google Scholar 

  • Mavromatis K, Ivanova N, Anderson I, Lykidis A, Hooper SD, Sun H, Kunin V, Lapidus A, Hugenholtz P, Patel B, Kyrpides NC (2009) Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS One 4:e4192

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda-Herrera C, Sauceda I, González-Sánchez J, Acuña N (2010) Corrosion degradation of pipeline carbon steels subjected to geothermal plant conditions. Anti Corrosion Methods Mater 57:167–172

    Article  CAS  Google Scholar 

  • Molari M, Giovannelli D, d’Errico G, Manini E (2012) Factors influencing prokaryotic community structure composition in sub-surface coastal sediments. Estuar Coast Shelf Sci 97:141–148

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    Article  CAS  PubMed  Google Scholar 

  • Nelson DM, Ohene-Adjei S, Hu FS, Cann IKO, Mackie RI (2007) Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microb Ecol 54:252–263

    Article  CAS  PubMed  Google Scholar 

  • Obst K, Wolfgramm M (2010) Geothermische, balneologische und speichergeologische potenziale und nutzungen des tieferen untergrundes der region Neubrandenburg. Neubrandenburg Geol Beitr 10:145–174

    Google Scholar 

  • Paul E, Ochoa JC, Pechaud Y, Liu Y, Liné A (2012) Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Res 46:5499–5508

    Article  CAS  PubMed  Google Scholar 

  • Pedersen K (1997) Microbial life in deep granitic rocks. FEMS Microbiol Rev 20:399–414

    Article  CAS  Google Scholar 

  • Porter ML, Engel AS (2008) Diversity of uncultured Epsilonproteobacteria from terrestrial sulfidic caves and springs. Appl Environ Microbiol 74:4973–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruby EG, Jannasch HW (1982) Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sand W (2003) Microbial life in geothermal waters. Geothermics 32:655–667

    Article  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sette LD, Simioni KCM, Vasconcellos SP, Dussan LJ, Neto EVS, Oliveira VM (2007) Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Antonie Van Leeuwenhoek 91:253–266

    Article  CAS  PubMed  Google Scholar 

  • Sievert SM, Heidorn T, Kuever J (2000) Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Microbiol 50:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Kolganova TV, Spiridonova EM, Berg IA, Muyzer G (2006) Thiomicrospira halophila sp. nov., a moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56:2375–2380

    Article  CAS  PubMed  Google Scholar 

  • Stevens T, McKinley J (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454

    Article  CAS  Google Scholar 

  • Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K (2004) Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana arc, western Pacific. Int J Syst Evol Microbiol 54:2325–2333

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tourova TP, Slobodova NV, Bumazhkin BK, Kolganova TV, Muyzer G, Sorokin DY (2013) Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker. FEMS Microbiol Ecol 84:280–289

    Article  CAS  PubMed  Google Scholar 

  • Valdez B, Schorr M, Quintero M, Carrillo M, Zlatev R, Stoytcheva M, Ocampo JDD (2009) Corrosion and scaling at Cerro Prieto geothermal field. Anti Corrosion Methods Mater 56:28–34

    Article  CAS  Google Scholar 

  • Van Beek C (1989) Rehabilitation of clogged discharge wells in The Netherlands. Q J Eng Geol 22:75–80

    Article  Google Scholar 

  • Vetter A, Mangelsdorf K, Schettler G, Seibt A, Wolfgramm M, Rauppach K, Vieth-Hillebrand A (2012) Fluid chemistry and impact of different operating modes on microbial community at Neubrandenburg heat storage (Northeast German Basin). Org Geochem 53:8–15

    Article  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Gregory A, Stahl DA, Brusseau GA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59:611–621

    Article  CAS  PubMed  Google Scholar 

  • Würdemann H, Westphal A, Lerm S, Kleyböcker A, Teitz S, Kasina M, Miethling-Graff R, Seibt A, Wolfgramm M (2014) Influence of microbial processes on the operational reliability in a geothermal heat store—results of long-term monitoring at a full scale plant and first studies in a bypass system. Energy Procedia 59:412–417

    Article  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioi 13:134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the public utilities of the city of Neubrandenburg for providing access to the topside facility of the geothermal heat store. In addition, the authors would also like to thank AMODIA Bioservice GmbH (Braunschweig, Germany) for SSCP analyses and to Dr. Alexandra Vetter and Dr. Andrea Vieth-Hillebrand for the DOC measurements and Dr. Birgit Plessen, from GFZ German Research Centre for Geoscience, for the determination of the carbon isotopic composition. Moreover, the authors would like to thank Dr. Heinrich Taubald from the Department of Geosciences of Tübingen University for the sulfur isotopic composition measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilke Würdemann.

Ethics declarations

Ethical statement

This work was supported by Federal Ministry of the Environment, Natural Conservation and Nuclear Safety (BMU, grant no. 0327634). The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westphal, A., Lerm, S., Miethling-Graff, R. et al. Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin. Appl Microbiol Biotechnol 100, 3277–3290 (2016). https://doi.org/10.1007/s00253-015-7181-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7181-1

Keywords

Navigation