Skip to main content

Advertisement

Log in

Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilm formation on the tooth surface is the root cause of dental caries and periodontal diseases. Streptococcus mutans is known to produce biofilm which is one of the primary causes of dental caries. Acid production and acid tolerance along with exopolysaccharide (EPS) formation are major virulence factors of S. mutans biofilm. In the current study, calcium fluoride nanoparticles (CaF2-NPs) were evaluated for their effect on the biofilm forming ability of S. mutans in vivo and in vitro. The in vitro studies revealed 89 % and 90 % reduction in biofilm formation and EPS production, respectively. Moreover, acid production and acid tolerance abilities of S. mutans were also reduced considerably in the presence of CaF2-NPs. Confocal laser scanning microscopy and transmission electron microscopy images were in accordance with the other results indicating inhibition of biofilm without affecting bacterial viability. The qRT-PCR gene expression analysis showed significant downregulation of various virulence genes (vicR, gtfC, ftf, spaP, comDE) associated with biofilm formation. Furthermore, CaF2-NPs were found to substantially decrease the caries in treated rat groups as compared to the untreated groups in in vivo studies. Scanning electron micrographs of rat’s teeth further validated our results. These findings suggest that the CaF2-NPs may be used as a potential antibiofilm applicant against S. mutans and may be applied as a topical agent to reduce dental caries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Banas JA (2004) Virulence properties of Streptococcus mutans. Front Biosci 9:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Meth 89:271–277

    Article  CAS  Google Scholar 

  • Dmitriev A, Mohapatra SS, Chong P, Neely M, Biswas S, Biswas I (2011) CovR controlled global regulation of gene expression in Streptococcus mutans. PLoS One 6:e2012

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Eshed M, Lellouche J, Banin E, Gedanken A (2013) MgF2 nanoparticle-coated teeth inhibit Streptococcus mutans biofilm formation on a tooth model. J Mater Chem B 1:3985

    Article  CAS  Google Scholar 

  • Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez M, Watson G, Krysan DJ, Bowen WH, Koo H (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes the virulence of plaque-biofilms in vivo. Infect Immun 82:1968–1981

    Article  PubMed Central  PubMed  Google Scholar 

  • Featherstone JDB (1999) Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol 27:31–40

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Fujihara S, Kadota Y, Kimura T (2002) Role of organic additives in the sol-gel synthesis of porous CaF2 anti-reflective coatings. J Sol-Gel Sci Technol 24:147–154

    Article  CAS  Google Scholar 

  • Fux CA, Stoodley P, Hall-stoodley L, Costerton JW (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 1(4):667–683

    Article  PubMed  Google Scholar 

  • Gregoire S, Singh AP, Vorsa N, Koo H (2010) Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol 103:1960–1968

    Article  Google Scholar 

  • Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44(2):331–384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamilton IR (1977) Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Caries Res 11:262–291

    Article  PubMed  Google Scholar 

  • Hasan S, Danishuddin M, Adil M, Singh K, Verma PK, Khan AU (2012) Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. Plos One 7:e40319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasan S, Danishuddin M, Khan AU (2015) Inhibitory effect of Zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiol 15(1):1

    Article  PubMed Central  PubMed  Google Scholar 

  • He Z, Wang Q, Hu Y, Liang J, Jiang Y, Ma R, Tang Z, Huang Z (2012) Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxs mutant strain. Int J Antimicrob Agents 40:30–35

    Article  PubMed  Google Scholar 

  • Hernández-Sierra JF, Ruiz F, Cruz Pena DCC, Martínez-Gutiérrez F, Martínez AE, de Jesús Pozos Guillén AJP, Tapia-Pérez H, Martínez Castañón GM (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 4:237–240

    Article  PubMed  Google Scholar 

  • Islam B, Khan SN, Haque I, Alam M, Mushfiq M, Khan AU (2008) Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J Antimicrob Chemother 62:751–757

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Zakir M, Khanam Z, Shakil S, Khan AU (2010) Novel compound from Trachyspermum ammi (Ajowan caraway) seeds with antibiofilm and anti adherence activities against Streptococcus mutans: a potential chemotherapeutic agent against dental caries. J Appl Microbiol 109:2151–2159

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Alam F, Azam A, Khan AU (2012) Gold nanoparticle enhanced methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine 7:3245–3257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan ME, Alam F, Parveen A, Naqvi AH (2013) structural, optical and dielectric properties of alkaline earth metal (Sr 0.05, Mg 0.05 and Ba 0.05) doped CaF2 nanoparticles and their microscopic analysis. J Adv Microsc Res 8:45–52

    Article  CAS  Google Scholar 

  • Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-smith AM, Bowen WH (2003) Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52:782–789

    Article  CAS  PubMed  Google Scholar 

  • Krol JE, Biswas S, King C, Biswas I (2014) SMU.746-SMU.747, a putative membrane permease complex, is involved in aciduricity, acidogenesis, and biofilm formation in Streptococcus mutans. J Bacteriol 196:129–139

    Article  PubMed Central  PubMed  Google Scholar 

  • Kulshrestha S, Khan S, Meena R, Singh BR, Khan AU (2014) A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling 30(10):1281–1294

    Article  CAS  PubMed  Google Scholar 

  • Kumar GA, Chen CW, Ballato J, Riman RE (2007) Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites. Chem Mater 19:1523–1528

    Article  CAS  Google Scholar 

  • Kuramitsu HK (1993) Virulence factors of mutans Streptococci: role of molecular genetics. Crit Rev Oral Biol Med 4:159–176

    CAS  PubMed  Google Scholar 

  • Larson RM (1981) Merits and modifications of scoring rat dental caries by Keyes’ method. In: Tanzer JM (ed) Animal models in cariology. Microbiology abstracts (special suppl.). IRL, Washington, pp 195–203

    Google Scholar 

  • Li L (2003) The biochemistry and physiology of metallic fluoride: action, mechanism, and implications. Crit Rev Oral Biol Med 14:100–114

    Article  PubMed  Google Scholar 

  • Li Y-H, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum-sensing signalling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184(10):2699–2708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380

    PubMed Central  CAS  PubMed  Google Scholar 

  • López-Moreno A, Sepúlveda-Sánchez JD, Mercedes Alonso Guzmán MMA, Le Borgne SL (2014) Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 30:547–560

    Article  PubMed  Google Scholar 

  • Mah TC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Marquis RE, Clock SA, Mota-Meira M (2003) Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol Rev 26:493–510

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Nomura R, Nemoto H, Mukai T, Yoshioka H, Shudo Y, Hata H, Toda K, Taniguchi K, Amano A, Ooshima T (2007) Detection of novel serotype k Streptococcus mutans in infective endocarditis patients. J Med Microbiol 56:1413–1415

    Article  PubMed  Google Scholar 

  • Nance WC, Dowd SE, Samarian D, Chludzinski J, Delli J, Battista J, Rickard AH (2013) A high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials. J Antimicrob Chemother 68:2550–2560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Omolfajr N, Nasser S, Mahmood R, Kompany A (2011) Synthesis and characterization of CaF2 NPs with co-precipitation and hydrothermal methods. J Nanomed Nanotechnol 2:5

    Article  Google Scholar 

  • Pandurangappa C, Lakshminarasappa BN (2011a) Optical absorption and photoluminescence studies in gamma-irradiated nanocrystalline CaF2. Nanosci Nanotechnol 2:108

    Google Scholar 

  • Pandurangappa C, Lakshminarasappa BN (2011b) Optical studies of samarium-doped fluoride nanoparticles. Philos Mag 91:35

    Article  Google Scholar 

  • Phan TN, Buckner T, Sheng J, Baldeck JD, Marquis RE (2004) Physiologic actions of zinc related to inhibition of acid and alkali production by oral Streptococci in suspensions and biofilms. Oral Microbiol Immunol 19:31–38

    Article  CAS  PubMed  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  PubMed  Google Scholar 

  • Rajilić-Stojanović M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136

    Article  PubMed  Google Scholar 

  • Rølla G, Saxegaard E (1990) Critical evaluation of the composition and use of topical fluorides with emphasis on the role of calcium fluoride in caries inhibition. J Dent Res 69(2 Suppl):780–785

  • Rosin-Grget K, Lincir I (2001) Current concept on the anticaries fluoride mechanism of the action. Coll Antropol 25(2):703–712

    CAS  PubMed  Google Scholar 

  • Saxegaard E, Rølla G (1989) Kinetics of acquisition and loss of calcium fluoride by enamel in vivo. Caries Res 23:406–411

    Article  CAS  PubMed  Google Scholar 

  • Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Chow LC (2008) Preparation and properties of nano-sized calcium fluoride for dental applications. Dent Mater 24(1):111–116

    Article  PubMed Central  PubMed  Google Scholar 

  • Sutton SV, Bender GR, Marquis RE (1987) Fluoride inhibition of proton-translocating ATPases of oral bacteria. Infect Immun 55(11):2597–2603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Svensäter G, Sjögreen B, Hamilton IR (2000) Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146:107–117

    Article  PubMed  Google Scholar 

  • Xu HHK, Moreau J, Sun L, Chow LC (2008) Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials 29(32):4261–4267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Quan Z, Yang J, Yang P, Lian H, Lin J (2008) Solvothermal synthesis of well dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties. Nanotechnology 19:075603

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Advanced Instrumentation Research Facility (J.N.U., India) and Center of Excellence in Material Sciences (A.M.U., India) for providing instrumental support. The authors would also like to acknowledge the Department of Biotechnology (DBT), Government of India, for the support and for allowing the use of the internal facilities of the department. SK thanks BSR-UGC JRF for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad U. Khan.

Ethics declarations

This research was conducted in accordance with institutional ethical standards. The study on animals was approved by the “Interdisciplinary Biotechnology Unit, Institutional Ethical Committee.” All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Funding

This study was supported by a grant from the Council of Scientific and Industrial Research no. 37 (1576) /13/EMR-II.

Conflict of interest

All authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshrestha, S., Khan, S., Hasan, S. et al. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol 100, 1901–1914 (2016). https://doi.org/10.1007/s00253-015-7154-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7154-4

Keywords

Navigation