Skip to main content
Log in

Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The success of biotechnological processes is based on the availability of efficient and highly specific biocatalysts, which can satisfy industrial demands. Extreme and remote environments like the deep brine pools of the Red Sea represent highly interesting habitats for the discovery of novel halophilic and thermophilic enzymes. Haloferax volcanii constitutes a suitable expression system for halophilic enzymes obtained from such brine pools. We developed a batch process for the cultivation of H. volcanii H1895 in controlled stirred-tank bioreactors utilising knockouts of components of the flagella assembly system. The standard medium Hv-YPC was supplemented to reach a higher cell density. Without protein expression, cell dry weight reaches 10 g L−1. Two halophilic alcohol dehydrogenases were expressed under the control of the tryptophanase promoter p.tna with 16.8 and 3.2 mg gCDW −1, respectively, at a maximum cell dry weight of 6.5 g L−1. Protein expression was induced by the addition of l-tryptophan. Investigation of various expression strategies leads to an optimised two-step induction protocol introducing 6 mM l-tryptophan at an OD650 of 0.4 followed by incubation for 16 h and a second induction step with 3 mM l-tryptophan followed by a final incubation time of 4 h. Compared with the uncontrolled shaker-flask cultivations used until date, dry cell mass concentrations were improved by a factor of more than 5 and cell-specific enzyme activities showed an up to 28-fold increased yield of the heterologous proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albers SV, Pohlschroder M (2009) Diversity of archaeal type IV pilin-like structures. Extremophiles 13(3):403–10. doi:10.1007/s00792-009-0241-7

    Article  PubMed  CAS  Google Scholar 

  • Allers T (2010) Overexpression and purification of halophilic proteins in Haloferax volcanii. Bioengineered Bugs 1(4):288–290. doi:10.1128/AEM.02670-09

    Article  PubMed  PubMed Central  Google Scholar 

  • Allers T, Ngo HP, Mevarech M, Lloyd RG (2004) Development of additional selectable markers for the halophilic Archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70(2):943–953. doi:10.1128/aem.70.2.943-953.2004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allers T, Barak S, Liddell S, Wardell K, Mevarech M (2010) Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 76(6):1759–69. doi:10.1128/AEM.02670-09

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3(4):416–33. doi:10.1111/j.1758-2229.2011.00264.x

    Article  PubMed  Google Scholar 

  • Arends I, Sheldon RA, Hanefeld U (2007) Introduction: green chemistry and catalysis green chemistry and catalysis I. WILEY-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. J Bacteriol 62(3):293–300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bitan-Banin G, Ortenberg R, Mevarech M (2003) Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 185(3):772–778. doi:10.1128/jb.185.3.772-778.2003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Braesen C, Schoenheit P (2001) Mechanisms of acetate formation and acetate activation in halophilic archaea. Arch Microbiol 175(5):360–368. doi:10.1007/s002030100273

    Article  Google Scholar 

  • Cao Y, Liao L, Xu XW, Oren A, Wang C, Zhu XF, Wu M (2008) Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles 12(3):471–6. doi:10.1007/s00792-007-0133-7

    Article  PubMed  CAS  Google Scholar 

  • Connaris H, Chaushuri JB, Danson MJ, Hough DW (1998a) Expression, reactivation and purification of enzymes from Haloferax volcanii in Escherichia coli. Biotechnol Bioeng 64(1):38–45

    Article  Google Scholar 

  • Connaris H, West MW, Hough DW, Danson MJ (1998b) Cloning and overexpression in Escherichia coli of the gene encoding citrate synthase from the hyperthermophilic Archaeon Sulfolobis solfataricus. Extremophiles 2:61–66

    Article  PubMed  CAS  Google Scholar 

  • Danson MJ, Hough DW (1998) Structure, function and stability of enzymes from the Archaea. Trends Microbiol 6(8):307–314

    Article  PubMed  CAS  Google Scholar 

  • Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67(7):3077–85. doi:10.1128/AEM.67.7.3077-3085.2001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19

  • Elleuche S, Schroder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–23. doi:10.1016/j.copbio.2014.04.003

    Article  PubMed  CAS  Google Scholar 

  • Esquivel RN, Pohlschroder M (2014) A conserved type IV pilin signal peptide H-domain is critical for the post-translational regulation of flagella-dependent motility. Mol Microbiol 93(3):494–504. doi:10.1111/mmi.12673

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks G, Steck TS, Wallach DFH (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10(13):2606–2617

    Article  PubMed  CAS  Google Scholar 

  • Frols S, Dyall-Smith M, Pfeifer F (2012) Biofilm formation by haloarchaea. Environ Microbiol 14(12):3159–74. doi:10.1111/j.1462-2920.2012.02895.x

    Article  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook, vol 10, Springer. University of Hertfordshire, Hatfield, pp 571–607

    Chapter  Google Scholar 

  • Ghosh A, Albers SV (2011) Assembly and function of the archaeal flagellum. Biochem Soc Trans 39(1):64–9. doi:10.1042/BST0390064

    Article  PubMed  CAS  Google Scholar 

  • Gross B, Ronen N, Honigman S, Livne E (1999) Tryptophan toxicity—time and dose response in rats. Tryptophan, serotonin and melatonin. Adv Exp Med Biol 467:507–516

    Article  PubMed  CAS  Google Scholar 

  • Grötzinger SW, Alam I, Ba Alawi W, Bajic VB, Stingl U, Eppinger J (2014) Mining a database of single amplified genomes from Red Sea brine pool extremophiles—improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA). Front Microbiol 5:134. doi:10.3389/fmicb.2014.00134

    PubMed  PubMed Central  Google Scholar 

  • Hatti-Kaul R, Tornvall U, Gustafsson L, Borjesson P (2007) Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol 25(3):119–24. doi:10.1016/j.tibtech.2007.01.001

    Article  PubMed  CAS  Google Scholar 

  • Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13(9):2285. doi:10.1039/c1gc15424a

    Article  CAS  Google Scholar 

  • Holmes ML, Dyall-Smith M (2000) Sequence and expression of a halobacterial beta-galactosidase. Mol Microbiol 36(1):114–122

    Article  PubMed  CAS  Google Scholar 

  • Holmes M, Scopes RK, Moritz R, Simpson RJ, Englert C, Pfeifer F, Dyall-Smith M (1996) Purification and analysis of an extremely halophilic beta-galactosidase from Haloferax alicantei. Biochem Biophys Acta 1337:276–286

    Google Scholar 

  • Holmes M, Kamekura M, Lam W, Nuttall S, Woods WG, Jablonski P, Serrano J, Ngui K, Antón J, Allers T (2008) The Halohandbook, vol 7

  • Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46

    Article  PubMed  CAS  Google Scholar 

  • Karan R, Capes M, DasSarma P, DasSarma S (2013) Cloning, overexpression, purification and characterization of a polyextremophilic beta-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium sp. NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11(10):1641–50. doi:10.1101/gr.190201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Large A, Stamme C, Lange C, Duan Z, Allers T, Soppa J, Lund PA (2007) Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene. Mol Microbiol 66(5):1092–106. doi:10.1111/j.1365-2958.2007.05980.x

    Article  PubMed  CAS  Google Scholar 

  • Lestini R, Laptenok SP, Kuhn J, Hink MA, Schanne-Klein MC, Liebl U, Myllykallio H (2013) Intracellular dynamics of archaeal FANCM homologue Hef in response to halted DNA replication. Nucleic Acids Res 41(22):10358–70. doi:10.1093/nar/gkt816

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liliensiek AK, Cassidy J, Gucciardo G, Whitely C, Paradisi F (2013) Heterologous overexpression, purification and characterisation of an alcohol dehydrogenase (ADH2) from Halobacterium sp. NRC-1. Mol Biotechnol 55(2):143–149 doi:10.1007/s12033-013-9666-4

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaption of enzymes. Extremophiles 4:91–98

    Article  PubMed  CAS  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    Article  PubMed  CAS  Google Scholar 

  • Meyer H-P (2011) Sustainability and biotechnology. Org Process Res Dev 15:180–188

    Article  CAS  Google Scholar 

  • Mironescu M, Mironescu ID, Jascanu V, Posten C (2003) Influence of cultivation media on halobacteria I growth and biomass formation. ACTA Univ Cibiniensis 1(7):17–24

    Google Scholar 

  • Mullakhanbhai M, Larsen H (1975) Halobacterium volcanii spec. nov., a Dead-Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2. doi:10.1186/1746-1448-4-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89(5):512–23. doi:10.1002/bit.20352

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environment. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Rozzel JD (1999) Commercial scale biocatalysts: myths and reality. Bioorg Med Chem 7:2253–2261

    Article  Google Scholar 

  • Stroud A, Liddell S, Allers T (2012) Genetic and biochemical identification of a novel single-stranded DNA-binding complex in Haloferax volcanii. Front Microbiol 3:224. doi:10.3389/fmicb.2012.00224

  • Timpson LM, Alsafadi D, Mac Donnchadha C, Liddell S, Sharkey MA, Paradisi F (2012) Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea. Extremophiles 16(1):57–66. doi:10.1007/s00792-011-0405-0

    Article  PubMed  CAS  Google Scholar 

  • Timpson LM, Liliensiek AK, Alsafadi D, Cassidy J, Sharkey MA, Liddell S, Allers T, Paradisi F (2013) A comparison of two novel alcohol dehydrogenase enzymes (ADH1 and ADH2) from the extreme halophile Haloferax volcanii. Appl Microbiol Biotechnol 97(1):195–203. doi:10.1007/s00253-012-4074-4

    Article  PubMed  CAS  Google Scholar 

  • Tripepi M, You J, Temel S, Onder O, Brisson D, Pohlschroder M (2012) N-glycosylation of Haloferax volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella. J Bacteriol 194(18):4876–87. doi:10.1128/JB.00731-12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tripepi M, Esquivel RN, Wirth R, Pohlschroder M (2013) Haloferax volcanii cells lacking the flagellin FlgA2 are hypermotile. Microbiology 159(Pt 11):2249–58. doi:10.1099/mic.0.069617-0

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6(3):213–218. doi:10.1016/s1369-5274(03)00060-2

    Article  PubMed  Google Scholar 

  • Wang Y, Cao H, Zhang G, Bougouffa S, Lee OO, Al-Suwailem A, Qian PY (2013) Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools. Sci Rep 3:1748. doi:10.1038/srep01748

    PubMed  PubMed Central  Google Scholar 

  • Weuster-Botz D, Puskeiler R, Kusterer A, Kaufmann K, John GT, Arnold M (2005) Methods and milliliter scale devices for high-throughput bioprocess design. Bioprocess Biosyst Eng 28(2):109–19. doi:10.1007/s00449-005-0011-6

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69(1):12–50. doi:10.1128/MMBR.69.1.12-50.2005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST). The authors gratefully acknowledge the support of Eva Strillinger and Stefan Grötzinger by the International Graduate School of Science and Engineering (IGSSE), Technische Universität München (TUM), Germany. We thank Anastassja Akal, Ram Karan and Lars Janoscheck for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jörg Eppinger or Dirk Weuster-Botz.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Eva Strillinger and Stefan Wolfgang Grötzinger contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strillinger, E., Grötzinger, S.W., Allers, T. et al. Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor. Appl Microbiol Biotechnol 100, 1183–1195 (2016). https://doi.org/10.1007/s00253-015-7007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7007-1

Keywords

Navigation