Skip to main content
Log in

Development of the dichlorvos-ammonia (DV-AM) method for the visual detection of aflatoxigenic fungi

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Aflatoxins (AFs) are carcinogenic and toxic secondary metabolites produced mainly by Aspergillus flavus and Aspergillus parasiticus. To monitor and regulate the AF contamination of crops, a sensitive and precise detection method for these toxigenic fungi in environments is necessary. We herein developed a novel visual detection method, the dichlorvos-ammonia (DV-AM) method, for identifying AF-producing fungi using DV and AM vapor on agar culture plates, in which DV inhibits the esterase in AF biosynthesis, causing the accumulation of anthraquinone precursors (versiconal hemiacetal acetate and versiconol acetate) of AFs in mycelia on the agar plate, followed by a change in the color of the colonies from light yellow to brilliant purple-red by the AM vapor treatment. We also investigated the appropriate culture conditions to increase the color intensity. It should be noted that other species producing the same precursors of AFs such as Aspergillus nidulans and Aspergillus versicolor could be discriminated from the Aspergillus section Flavi based on the differences of their phenotypes. The DV-AM method was also useful for the isolation of nonaflatoxigenic fungi showing no color change, for screening microorganisms that inhibit the AF production by fungi, and for the characterization of the fungi infecting corn kernels. Thus, the DV-AM method can provide a highly sensitive and visible indicator for the detection of aflatoxigenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abalunan A, Teves F, Madamba MRS, Abalunan AJ (2013) Isolation of fungal species and aflatoxin detection in fermented products. Int Res J Biol Sci 2:51–54

    Google Scholar 

  • Abbas HK, Shier WT, Horn BW, Weaver MA (2004a) Cultural methods for aflatoxin detection. Toxin Rev 23:295–315. doi:10.1081/TXR-200027854

    Article  CAS  Google Scholar 

  • Abbas HK, Weaver MA, Horn BW, Carbone I, Monacell JT, Shier WT (2011) Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn. Toxin Rev 30:59–70. doi:10.3109/15569543.2011.591539

  • Abbas HK, Zablotowicz RM, Weaver MA, Horn BW, Xie W, Shier WT (2004b) Comparison of cultural and analytical methods for determination of aflatoxin production by Mississippi Delta Aspergillus isolates. Can J Microbiol 50:193–199. doi:10.1139/w04-006

  • Anukul N, Vangnai K, Mahakarnchandkul W (2013) Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. J Food Drug Anal 21:227–241. doi:10.1016/jjfda.2013.07.009

    Article  CAS  Google Scholar 

  • Baggerman WI (1981) A modified Rose Bengal medium for the enumeration of yeasts and moulds from foods. Eur J Appl Microbiol Biotechnol 12:242–247. doi:10.1007/BF00499496

    Article  CAS  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. doi:10.1128/CMR.16.3.497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A 93:1418–1422. doi:10.1073/pnas.93.4.1418

  • Cao Y, Glass AD, Crawford NM (1993) Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations aux1, axr1, and axr2. Plant Physiol 102:983–989. doi:10.1104/pp. 102.3.983

  • Carmody WR (1961) Easily prepared wide range buffer series. J Chem Educ 38:559. doi:10.1021/ed038p559

  • Chang PK, Yabe K, Yu J (2004) The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Appl Environ Microbiol 70:3593–3599. doi:10.1128/AEM.70.6.3593-3599.2004

  • Cole RJ, Cotty PJ (1990) Biocontrol of aflatoxin production by using biocompetitive agents. A Perspect Aflatoxin F Crop Anim Food Prod United States 62–66.

  • Cotty PJ, Mellon JE (2006) Ecology of aflatoxin producing fungi and biocontrol of aflatoxin contamination. Mycotoxin Res 22:110–117

    Article  CAS  PubMed  Google Scholar 

  • Davis ND, Iyer SK, Diener UL (1987) Improved method of screening for aflatoxin with a coconut agar medium. Appl Environ Microbiol 53:1593–1595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Do JH, Choi D-K (2007) Aflatoxins: detection, toxicity, and biosynthesis. Biotechnol Bioprocess Eng 12:585–593

    Article  CAS  Google Scholar 

  • El Khoury A, Atoui A, Rizk T, Lteif R, Kallassy M, Lebrihi A (2011) Differentiation between Aspergillus flavus and Aspergillus parasiticus from pure culture and aflatoxin-contaminated grapes using PCR-RFLP analysis of aflR-aflJ intergenic spacer. J Food Sci 76:M247–M253. doi:10.1111/j.1750-3841.2011.02153.x

  • Fente CA, Ordaz JJ, Vázquez BI, Franco CM, Cepeda A (2001) New additive for culture media for rapid identification of aflatoxin. Appl Environ Microbiol. doi:10.1128/AEM.67.10.4858

    PubMed Central  PubMed  Google Scholar 

  • Gowda NKS, Malathi V, Suganthi RU (2004) Effect of some chemical nad herbal compounds on grohe of Aspergillus parasiticus and aflatoxin production. 281–291.

  • Grace D, Unnevehr LJ (2013) The role of risk assessment in guiding aflatoxin policy.

  • Hess DC, Lu W, Rabinowitz JD, Botstein D (2006) Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4:2012–2023. doi:10.1371/journal.pbio.0040351

    Article  CAS  Google Scholar 

  • Hsieh DPH, Singh R, Yao RC, Bennett JW (1978) Anthraquinones in the biosynthesis of sterigmatocystin by Aspergillus versicolor. Appl Environ Microbiol 35:980–982

  • Kelkar HS, Keller NP, Adams TH (1996) Aspergillus nidulans stcP encodes an O-methyltransferase that is required for sterigmatocystin biosynthesis. Appl Environ Microbiol 62:4296–4298

  • Levin RE (2012) PCR detection of aflatoxin producing fungi and its limitations. Int J Food Microbiol 156:1–6. doi:10.1016/j.ijfoodmicro.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  • Lizárraga-Paulín EG, Moreno-Martínez E, Miranda-Castro SP (2010) Aflatoxins and their impact on human and animal health: an emerging problem. 1–28.

  • Luo J, Vogel RF, Niessen L (2014) Rapid detection of a fl atoxin producing fungi in food by real-time quantitative loop-mediated isothermal amplification. Food Microbiol 44:142–148. doi:10.1016/j.fm.2014.06.004

  • Mostafa A, Armin A, Hamid P, Reza AM (2012) Rapid Detection Methods for Analysis of Fungi and Mycotoxins in Agriculture Products. Res J Recent Sci 1:90–98

    Google Scholar 

  • Payne GA, Brown MP (1998) Genetics and physiology of aflatoxin biosynthesis. Annu Rev Phytopathol 36:329–362

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hocking AD, Glenn DR (1983) An improved medium for the detection of Aspergillus flavus and A. parasiticus. J Appl Bacteriol 54:109–114

    Article  CAS  PubMed  Google Scholar 

  • Rabie CJ, Lubben A, Steyn M (1976) Production of sterigmatocystin by Aspergillus versicolor and Bipolaris sorokiniana on semisynthetic liquid and solid media. Appl Environ Microbiol 32:206–208

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rajani P, Sridevi V, Lakshmi MVVC (2012) A review on biological control of aflatoxin crop contamination. Int J Chem Environ Pharm Res 3:83–86

    CAS  Google Scholar 

  • Reisser C, Dick C, Kruglyak L, Botstein D, Schacherer J, Hess D (2013) Genetic basis of ammonium toxicity resistance in a sake strain of yeast: a Mendelian case. G3 (Bethesda) 3:733–740. doi:10.1534/g3.113.005884

    Article  CAS  Google Scholar 

  • Saito M, Machida S (1999) A rapid identification method for aflatoxin-producing strains of Aspergillus flavus and A. parasiticus by ammonia vapor. Mycoscience 40:205–208. doi:10.1007/BF02464300

    Article  Google Scholar 

  • Shima Y, Shiina M, Shinozawa T, Ito Y, Nakajima H, Adachi Y, Yabe K (2009) Participation in aflatoxin biosynthesis by a reductase enzyme encoded by vrdA gene outside the aflatoxin gene cluster. Fungal Genet Biol 46:221–231. doi:10.1016/j.fgb.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Song F, Ren B, Chen C, Yu K, Liu X, Zhang Y, Yang N, He H, Liu X, Dai H, Zhang L (2014) Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359. Appl Microbiol Biotechnol 98:3753–3758. doi:10.1007/s00253-013-5409-5

    Article  CAS  PubMed  Google Scholar 

  • Sprott GD, Shaw KM, Jarrell KF (1984) Ammonia/potassium exchange in methanogenic bacteria. J Biol Chem 259:12602–12608

    CAS  PubMed  Google Scholar 

  • Wacoo AP, Wendiro D, Vuzi PC, Hawumba JF (2014) Methods for detection of aflatoxins in agricultural food crops. J Appl Chem 2014:1–15

    Article  Google Scholar 

  • Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D (2004) Human aflatoxin in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am Soc Clin Nutr 80:1106–1122

    CAS  Google Scholar 

  • Yabe K, Ando Y, Hamasaki T (1991) A metabolic grid among versiconal hemiacetal acetate, versiconol acetate, versiconol and versiconal during aflatoxin biosynthesis. J Gen Microbiol 137:2469–2475. doi:10.1099/00221287-137-10-2469

    Article  CAS  PubMed  Google Scholar 

  • Yabe K, Ando Y, Ito M, Terakado N (1987) Simple method for screening aflatoxin-producing molds by UV photography. Appl Environ Microbiol 53:230–234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yabe K, Chihaya N, Hamamatsu S, Sakuno E, Hamasaki T, Nakajima H, Bennett JW (2003) Enzymatic conversion of averufin to hydroxyversicolorone and elucidation of a novel metabolic grid involved in aflatoxin biosynthesis. Appl Environ Microbiol 69:66–73. doi:10.1128/AEM.69.1.66-73.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yabe K, Chihaya N, Hatabayashi H, Kito M, Hoshino S, Zeng H, Cai J, Nakajima H (2012) Production of M-/GM-group aflatoxins catalyzed by the OrdA enzyme in aflatoxin biosynthesis. Fungal Genet Biol 49:744–754. doi:10.1016/j.fgb.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  • Yabe K, Nakajima H (2004) Enzyme reactions and genes in aflatoxin biosynthesis. Appl Microbiol Biotechnol 64:745–755. doi:10.1007/s00253-004-1566-x

    Article  CAS  PubMed  Google Scholar 

  • Yabe K, Nakajima H (2011) Aflatoxin biosynthesis. Shokuhin eiseigaku zashi 52:135–147

    Article  CAS  Google Scholar 

  • Yabe K, Nakamura H, Ando Y, Terakado N, Nakajima H, Hamasaki T (1988) Isolation and characterization of Aspergillus parasiticus mutants with impaired aflatoxin production by a novel tip culture method. Appl Environ Microbiol 54:2096–2100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yabe K, Yan PS, Song Y, Ichinomiya M, Nakagawa H, Shima Y, Ando Y, Sakuno E, Nakajima H (2008) Isolation of microorganisms and substances inhibitory to aflatoxin production. Food Addit Contam Part A: Chem Anal Control Expo Risk Assess 25:1111–1117. doi:10.1080/02652030802403760

    Article  CAS  Google Scholar 

  • Yan P, Song Y, Sakuno E, Nakajima H (2004) Cyclo (l-Leucyl-l-Prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl Environ Microbiol 70:7466–7473. doi:10.1128/AEM.70.12.7466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshinari T, Akiyama T, Nakamura K, Kondo T, Takahashi Y, Muraoka Y, Nonomura Y, Nagasawa H, Sakuda S (2007) Dioctatin A is a strong inhibitor of aflatoxin production by Aspergillus parasiticus. Microbiology 153:2774–2780. doi:10.1099/mic.0.2006/005629-0

    Article  CAS  PubMed  Google Scholar 

  • Yu J (2012) Current understanding on aflatoxin biosynthesis and future perspective in reducing aflatoxin contamination. Toxins (Basel) 4:1024–1057. doi:10.3390/toxins4111024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kenji Tanaka and Dr. Masaru Manabe, the National Food Research Institute, for supplying all of the SYS strains, Dr. Masayuki Ichinomiya, the National Food Research Institute, for supplying for providing the P. citrinum strains, Dr. Tadatsugu Tanaka, Kobe Institute of Health, Japan, for providing the OMST-accumulating A. parasiticus strain (KIH No. 35-8), and Dr. Nancy Keller, the University of Wisconsin-Madison, for providing the A. nidulans strains. This work was performed with the assistance of the Computer Center of the Ministry of Agriculture, Forestry, and Fisheries.

Ethical statement

Funding

This study was funded by the Grant-in-aid, Ministry of Agriculture, Forestry and Fisheries, Japan, and partially supported by the Gender Equality Program, NARO.

Conflict of interest

The authors declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiko Yabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yabe, K., Hatabayashi, H., Ikehata, A. et al. Development of the dichlorvos-ammonia (DV-AM) method for the visual detection of aflatoxigenic fungi. Appl Microbiol Biotechnol 99, 10681–10694 (2015). https://doi.org/10.1007/s00253-015-6924-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6924-3

Keywords

Navigation