Skip to main content
Log in

Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recent advances in the biological production of fuels have relied on the optimization of pathways involving genes from diverse organisms. Several recent articles have highlighted the potential to expand the pool of useful genes by looking to filamentous fungi. This review highlights the enzymes and organisms used for the production of a variety of fuel types and commodity chemicals with a focus on the usefulness and promise of those from filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agger S, Lopez-Gallego F, Schmidt-Dannert C (2009) Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol Microbiol 72:1181–1195. doi:10.1111/j.1365-2958.2009.06717.x

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    CAS  PubMed  Google Scholar 

  • Ammar EM, Wang Z, Yang S-T (2013) Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Appl Microbiol Biotechnol 97:4677–4690

    CAS  PubMed  Google Scholar 

  • Amyris (2012) Photo release -- Azul Brazilian airlines makes successful demonstration flight with amyris renewable jet fuel produced from sugarcane (NASDAQ:AMRS). http://investors.amyris.com/releasedetail.cfm?releaseid=684373. Accessed 30 Sep 2013

  • Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J (2010) Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 106:86–96. doi:10.1002/bit.22668

    CAS  PubMed  Google Scholar 

  • Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808. doi:10.1128/AEM.02046-08

    PubMed Central  CAS  PubMed  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311. doi:10.1016/j.ymben.2007.08.003

    CAS  PubMed  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. doi:10.1038/nature06450

    CAS  PubMed  Google Scholar 

  • Atsumi S, Li Z, Liao JC (2009) Acetolactate Synthase from Bacillus subtilis serves as a 2-Ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75:6306–6311. doi:10.1128/AEM.01160-09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Atsumi S, Wu T-Y, Eckl E-M, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beck JJ, Mahoney NE, Cook D, Gee WS (2012) Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. J Agric Food Chem 60:11869–11876. doi:10.1021/jf304157q

    CAS  PubMed  Google Scholar 

  • Beller HR, Goh E-B, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76:1212–1223. doi:10.1128/AEM.02312-09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 108:19949–19954. doi:10.1073/pnas.1106958108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Booth JW, Phillips Jr CF (1998) Terpene dimer compositions and related methods of manufacture. Google Patents

  • Börjesson T, Stöllman U, Schnürer J (1990) Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates. Appl Environ Microbiol 56:3705–3710

    PubMed Central  PubMed  Google Scholar 

  • Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5:65. doi:10.1186/1754-6834-5-65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brennan TCR, Turner CD, Krömer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513–2522. doi:10.1002/bit.24536

    CAS  PubMed  Google Scholar 

  • Brodhun F, Schneider S, Göbel C, Hornung E, Feussner I (2010) PpoC from Aspergillus nidulans is a fusion protein with only one active haem. Biochem J 425:553–565. doi:10.1042/BJ20091096

    CAS  PubMed  Google Scholar 

  • Buśko M, Kulik T, Ostrowska A, Góral T, Perkowski J (2014) Quantitative volatile compound profiles in fungal cultures of three different Fusarium graminearum chemotypes. FEMS Microbiol Lett 359:85–93. doi:10.1111/1574-6968.12569

    PubMed  Google Scholar 

  • Carrau FM, Medina K, Boido E, Farina L, Gaggero C, Dellacassa E, Versini G, Henschke PA (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 243:107–115. doi:10.1016/j.femsle.2004.11.050

    CAS  PubMed  Google Scholar 

  • Chapaton TJ, Capehart TW, Linden JL (2004) Traction fluid with alkane bridged dimer. Google Patents

  • Cheesbrough TM, Kolattukudy PE (1988) Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane. J Biol Chem 263:2738–2743

    CAS  PubMed  Google Scholar 

  • Chen CS, Forbus Jr TR (1990) Process for production of traction fluids from bicyclic and monocyclic terpenes with zeolite catalyst. Google Patents

  • Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21. doi:10.1186/1754-6834-4-21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S-K, Chin W-C, Tsuge K, Huang C-C, Li S-Y (2013) Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. Bioresour Technol 145:204–209

    CAS  PubMed  Google Scholar 

  • Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70:2823–2829. doi:10.1128/AEM.70.5.2823-2829.2004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. doi:10.1038/nature11475

    CAS  PubMed  Google Scholar 

  • Connor MR, Cann AF, Liao JC (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86:1155–1164. doi:10.1007/s00253-009-2401-1

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cuomo CA, Güldener U, Xu J-R, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma L-J, Baker SE, Rep M et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    CAS  PubMed  Google Scholar 

  • Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol. doi:10.3389/fbioe.2014.00021

    PubMed Central  PubMed  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637. doi:10.1016/j.phytochem.2009.07.030

    CAS  PubMed  Google Scholar 

  • Dennis M (1992) A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci 89:5306–5310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Díaz P, Señoráns FJ, Reglero G, Ibañez E (2002) Truffle aroma analysis by headspace solid phase microextraction. J Agric Food Chem 50:6468–6472

    PubMed  Google Scholar 

  • Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8:2340–2368. doi:10.3390/md8082340

    PubMed Central  CAS  PubMed  Google Scholar 

  • Etschmann MMW, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59:1–8. doi:10.1007/s00253-002-0992-x

    CAS  PubMed  Google Scholar 

  • Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A (2011) Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab Eng 13:474–481

    CAS  PubMed  Google Scholar 

  • Felicetti B, Cane DE (2004) Aristolochene synthase: mechanistic analysis of active site residues by site-directed mutagenesis. J Am Chem Soc 126:7212–7221. doi:10.1021/ja0499593

    CAS  PubMed  Google Scholar 

  • Fiedler K, Schütz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121. doi:10.1078/1438-4639-00094

    CAS  PubMed  Google Scholar 

  • Freeman, G. G. M, R. I. (1949) The isolation and chemical properties of trichothecin, an antifungal substance from Trichothecium roseum Link

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. doi:10.1038/nchembio.2007.5

    CAS  PubMed  Google Scholar 

  • Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A, Sismour AM, Kodira C, Egholm M, Church GM, Gerstein MB, Strobel SA (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet 8, e1002558. doi:10.1371/journal.pgen.1002558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gioacchini AM, Menotta M, Guescini M, Saltarelli R, Ceccaroli P, Amicucci A, Barbieri E, Giomaro G, Stocchi V (2008) Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds. Rapid Commun Mass Spectrom RCM 22:3147–3153. doi:10.1002/rcm.3714

    CAS  Google Scholar 

  • Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156:3814–3829

    CAS  PubMed  Google Scholar 

  • Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Shakulov RS, Debabov VG (2012) Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway. Biotechnol Lett 34:463–469

    CAS  PubMed  Google Scholar 

  • Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuel 24:267–273. doi:10.1021/ef900799c

    CAS  Google Scholar 

  • Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266. doi:10.1128/AEM.02625-07

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heddergott C, Calvo AM, Latge JP (2014) The Volatome of Aspergillus fumigatus. Eukaryot Cell 13:1014–1025. doi:10.1128/EC.00074-14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77:2727–2733. doi:10.1128/AEM.02454-10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26. doi:10.1016/j.funeco.2012.09.005

    Google Scholar 

  • International Energy Agency (2011) Technology roadmap: biofuels for transport

  • Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM et al (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell Online 19:1994–2005

    CAS  Google Scholar 

  • Kim B, Cho B-R, Hahn J-S (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111:115–124

    CAS  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355. doi:10.1146/annurev.arplant.043008.091955

    CAS  PubMed  Google Scholar 

  • Köksal M, Jin Y, Coates RM, Croteau R, Christianson DW (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 469:116–120. doi:10.1038/nature09628

    PubMed Central  PubMed  Google Scholar 

  • Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193. doi:10.1080/10408440802291497

    CAS  PubMed  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    CAS  PubMed  Google Scholar 

  • Lambert RJ, Skandamis PN, Coote PJ, Nychas G-J (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462. doi:10.1046/j.1365-2672.2001.01428.x

    CAS  PubMed  Google Scholar 

  • Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363

    CAS  PubMed  Google Scholar 

  • Lancker FV, Adams A, Delmulle B, Saeger SD, Moretti A, Peteghem CV, Kimpe ND (2008) Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J Environ Monit 10:1127–1133. doi:10.1039/B808608G

    PubMed  Google Scholar 

  • Larsen TO, Frisvad JC (1995) Characterization of volatile metabolites from 47 Penicillium taxa. Mycol Res 99:1153–1166. doi:10.1016/S0953-7562(09)80271-2

    CAS  Google Scholar 

  • Lee W-H, Seo S-O, Bae Y-H, Nan H, Jin Y-S, Seo J-H (2012) Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35:1467–1475. doi:10.1007/s00449-012-0736-y

    CAS  PubMed  Google Scholar 

  • Lesburg CA, Zhai G, Cane DE, Christianson DW (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277:1820–1824

    CAS  PubMed  Google Scholar 

  • Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165. doi:10.1126/science.1168243

    PubMed  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu T-Y, Higashide W, Malati P, Huo Y-X, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596. doi:10.1126/science.1217643

    CAS  PubMed  Google Scholar 

  • Liu W, Feng X, Zheng Y, Huang C-H, Nakano C, Hoshino T, Bogue S, Ko T-P, Chen C-C, Cui Y, Li J, Wang I, Hsu S-TD, Oldfield E, Guo R-T (2014) Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum. Sci Rep. doi:10.1038/srep06214

    Google Scholar 

  • Lu J, Brigham CJ, Gai CS, Sinskey AJ (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 96:283–297. doi:10.1007/s00253-012-4320-9

    CAS  PubMed  Google Scholar 

  • Ma SM, Li JW-H, Choi JW, Zhou H, Lee KKM, Moorthie VA, Xie X, Kealey JT, Da Silva NA, Vederas JC, Tang Y (2009) Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326:589–592. doi:10.1126/science.1175602

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marcheschi RJ, Li H, Zhang K, Noey EL, Kim S, Chaubey A, Houk KN, Liao JC (2012) A synthetic recursive “+1” pathway for carbon chain elongation. ACS Chem Biol 7:689–697. doi:10.1021/cb200313e

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802. doi:10.1038/nbt833

    CAS  PubMed  Google Scholar 

  • Mauriello G, Marino R, D’Auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME-GC-MS. J Chromatogr Sci 42:299–305

    CAS  PubMed  Google Scholar 

  • Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176. doi:10.1038/nbt1128

    CAS  PubMed  Google Scholar 

  • Meruva NK, Penn JM, Farthing DE (2004) Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-of-flight mass spectrometry. J Ind Microbiol Biotechnol 31:482–488. doi:10.1007/s10295-004-0175-0

    CAS  PubMed  Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiol Read Engl 156:270–277. doi:10.1099/mic.0.032540-0

    CAS  Google Scholar 

  • Müller A, Faubert P, Hagen M, Zu Castell W, Polle A, Schnitzler J-P, Rosenkranz M (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol FGB 54:25–33. doi:10.1016/j.fgb.2013.02.005

    Google Scholar 

  • Murahashi S (1938) Uber die riechstoffe des matsutake (Armillaria matsutake Ito et Imai Agaricaceae). Sci Pap Inst Phys Chem Res Tokyo 34:155–172

  • Nakano C, Kim H-K, Ohnishi Y (2011) Identification of the first bacterial monoterpene cyclase, a 1,8-cineole synthase, that catalyzes the direct conversion of geranyl diphosphate. ChemBioChem 12:1988–1991. doi:10.1002/cbic.201100330

    CAS  PubMed  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafton A, Latge J-P, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream M-A, Reichard U, Renauld H, Robson GD, de Cordoba SR, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, de Aldana CRV, Weidman J, White O, Woodward J, Yu J-H, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156. doi:10.1038/nature04332

    CAS  PubMed  Google Scholar 

  • Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845. doi:10.1007/s00253-008-1807-5

    CAS  PubMed  Google Scholar 

  • Or J, Laseter JL, Weber D (1966) Alkanes in fungal spores. Science 154:399–400

    PubMed  Google Scholar 

  • Park S-H, Kim S, Hahn J-S (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol 98:9139–9147

    CAS  PubMed  Google Scholar 

  • Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483. doi:10.1038/ncomms1494

    PubMed Central  PubMed  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328. doi:10.1038/nature11478

    CAS  PubMed  Google Scholar 

  • Pfeifer BA, Khosla C (2001) Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev MMBR 65:106–118. doi:10.1128/MMBR.65.1.106-118.2001

    CAS  Google Scholar 

  • Phelan RM, Sekurova ON, Keasling JD, Zotchev SB (2014) Engineering terpene biosynthesis in streptomyces for production of the advanced biofuel precursor bisabolene. ACS Synth Biol. doi:10.1021/sb5002517

    PubMed  Google Scholar 

  • Polizzi V, Adams A, Malysheva SV, De Saeger S, Van Peteghem C, Moretti A, Picco AM, De Kimpe N (2012) Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biol 116:941–953. doi:10.1016/j.funbio.2012.06.001

    CAS  PubMed  Google Scholar 

  • Renninger NS, Newman J, Reiling KK, Regentin R, Paddon CJ (2010) Production of isoprenoids. Patent Number US7659097 B2

  • Riyaz-Ul-Hassan S, Strobel G, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23:29–35

    CAS  PubMed  Google Scholar 

  • Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D (2002) The metabolic architecture of plant cells stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem 277:43948–43960. doi:10.1074/jbc.M206366200

    CAS  PubMed  Google Scholar 

  • Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-Alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Env Microbiol 77:1718–1727. doi:10.1128/AEM.02580-10

    CAS  Google Scholar 

  • Samson RA (1985) Occurrence of moulds in modern living and working environments. Eur J Epidemiol 1:54–61

    CAS  PubMed  Google Scholar 

  • Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Biol 3:466–475. doi:10.1021/sb4001382

    CAS  PubMed  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562. doi:10.1126/science.1187936

    CAS  PubMed  Google Scholar 

  • Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink G-JW, Boonstra J, Dijkhuizen L (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70:237–246. doi:10.1007/s00253-005-0070-2

    CAS  PubMed  Google Scholar 

  • Schuchardt S, Kruse H (2009) Quantitative volatile metabolite profiling of common indoor fungi: relevancy for indoor air analysis. J Basic Microbiol 49:350–362. doi:10.1002/jobm.200800152

    CAS  PubMed  Google Scholar 

  • Scullin C, Stavila V, Skarstad A, Keasling JD, Simmons BA, Singh S (2015) Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima. Bioresour Technol. doi:10.1016/j.biortech.2014.09.105

    PubMed  Google Scholar 

  • Searchinger T, Heimlich R (2015) Avoiding bioenergy competition for food crops and land. Install. 9 Creat Sustain Food Future World Resour Inst

  • Shaw JJ, Berbasova T, Sasaki T, Jefferson-George K, Spakowicz DJ, Dunican BF, Portero CE, Narvaez-Trujillo A, Strobel SA (2015a) Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with common specificity determinants to the plant synthases. J Biol Chem. doi:10.1074/jbc.M114.636159

    Google Scholar 

  • Shaw JJ, Spakowicz DJ, Dalal RS, Davis JH, Lehr NA, Dunican BF, Orellana EA, Narváez-Trujillo A, Strobel SA (2015b) Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinnonii E5202H. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6206-5

    PubMed  Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320. doi:10.1016/j.ymben.2008.08.001

    CAS  PubMed  Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915. doi:10.1128/AEM.03034-10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168. doi:10.1016/j.ymben.2006.10.005

    CAS  PubMed  Google Scholar 

  • Smith KM, Cho K-M, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055. doi:10.1007/s00253-010-2522-6

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007) Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68:2584–2598. doi:10.1016/j.phytochem.2007.03.030

    CAS  PubMed  Google Scholar 

  • Starks CM, Back K, Chappell J, Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820

    CAS  PubMed  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804. doi:10.1126/science.1139612

    CAS  PubMed  Google Scholar 

  • Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol 4:333–382

    CAS  PubMed  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    CAS  PubMed  Google Scholar 

  • Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328. doi:10.1099/mic.0.2008/022186-0

    CAS  PubMed  Google Scholar 

  • Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94. doi:10.1111/j.1574-6968.2011.02297.x

    CAS  PubMed  Google Scholar 

  • Sukovich DJ, Seffernick JL, Richman JE, Hunt KA, Gralnick JA, Wackett LP (2010) Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl Environ Microbiol 76:3842–3849. doi:10.1128/AEM.00433-10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tess Mends M, Yu E (2012) An Endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. J Pet Environ Biotechnol. doi:10.4172/2157-7463.1000117

    Google Scholar 

  • Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240. doi:10.1016/j.fuel.2009.02.002

    CAS  Google Scholar 

  • Tressl R, Bahri D, Engel KH (1982) Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). J Agric Food Chem 30:89–93

    CAS  Google Scholar 

  • Tsunematsu Y, Ishiuchi K, Hotta K, Watanabe K (2013) Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products. Nat Prod Rep 30:1139–1149. doi:10.1039/c3np70037b

    CAS  PubMed  Google Scholar 

  • Urano N, Fujii M, Kaino H, Matsubara M, Kataoka M (2014) Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae. Appl Microbiol Biotechnol 1–8

  • van der Werf MJ, de Bont JAM, Leak DJ (1997) Opportunities in microbial biotransformation of monoterpenes. In: Berger RG, Babel PDW, Blanch PDHW, Cooney PDCL, Enfors PDS-O, Eriksson PDK-EL, Fiechter PDA, Klibanov PDAM, Mattiasson PDB, Primrose PDSB, Rehm PDHJ, Rogers PDPL, Sahm PDH, Schügerl PDK, Tsao PDGT, Venkat DK, Villadsen PDJ, von Stockar PDU, Wandrey PDC (eds) Biotechnology of aroma compounds. Springer, Berlin, pp 147–177

    Google Scholar 

  • Walker JD, Cooney JJ (1973) Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. Appl Microbiol 26:705–708

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang C, Yoon S-H, Jang H-J, Chung Y-R, Kim J-Y, Choi E-S, Kim S-W (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13:648–655. doi:10.1016/j.ymben.2011.08.001

    CAS  PubMed  Google Scholar 

  • Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69. doi:10.1186/1754-6834-6-69

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wihlborg R (2008) Headspace soprtive extraction and GC-TOFMS for the identification of volatile fungal metabolites. J Microbiol Methods 75:244–250

    CAS  PubMed  Google Scholar 

  • Winters K, Parker PL, Baalen CV (1969) Hydrocarbons of blue-green algae: geochemical significance. Science 163:467–468. doi:10.1126/science.163.3866.467

    CAS  PubMed  Google Scholar 

  • Wurzenberger M, Grosch W (1984a) Stereochemistry of the cleavage of the 10-hydroperoxide isomer of linoleic acid to 1-octen-3-ol by a hydroperoxide lyase from mushrooms (Psalliota bispora). Biochim Biophys Acta BBA-Lipids Lipid Metab 795:163–165. doi:10.1016/0005-2760(84)90117-6

    CAS  Google Scholar 

  • Wurzenberger M, Grosch W (1984b) The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochim Biophys Acta BBA-Lipids Lipid Metab 794:25–30

    CAS  Google Scholar 

  • Yang J, Nie Q, Ren M, Feng H, Jiang X, Zheng Y, Liu M, Zhang H, Xian M et al (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 6:60

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuzawa S, Kim W, Katz L, Keasling JD (2012) Heterologous production of polyketides by modular type I polyketide synthases in Escherichia coli. Curr Opin Biotechnol 23:727–735. doi:10.1016/j.copbio.2011.12.029

    CAS  PubMed  Google Scholar 

  • Zhang F, Yang X, Ran W, Shen Q (2014) Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5. FEMS Microbiol Lett 359:116–123. doi:10.1111/1574-6968.12582

    CAS  PubMed  Google Scholar 

  • Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405. doi:10.1002/bit.25198

    CAS  PubMed  Google Scholar 

  • Zou J-J, Chang N, Zhang X, Wang L (2012) Isomerization and dimerization of pinene using Al-incorporated MCM-41 mesoporous materials. ChemCatChem 4:1289–1297

    CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported by the Office of Assistant Secretary of Defense for Research and Engineering NSSEFF grant N00244-09-1-0070 awarded to SAS.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Strobel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spakowicz, D.J., Strobel, S.A. Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 99, 4943–4951 (2015). https://doi.org/10.1007/s00253-015-6641-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6641-y

Keywords

Navigation