Skip to main content
Log in

Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study demonstrated that a combined heterotrophic and autotrophic denitrification (HAD) process is highly effective for the simultaneous removal of acetate, nitrate, and sulfide at an efficiency of 100, 80, and 100 %, respectively. In the HAD system, simultaneous sulfide, acetate, and nitrate removals were observed, which indicated that heterotrophic and autotrophic denitrification occurred simultaneously. When the sulfide was existed in HAD reactor, the main product of sulfide biooxidation was S0. Once the sulfide was exhausted, the sulfate concentration in the HAD reactor increased and became the main end product. These results provided an alternative method to control the end sulfide biooxidation product by online monitoring sulfide concentration. Nearly half (43 %) of the total clones in our mix-trophic reactor were amphitrophy denitrifiers. The autotrophic denitrifiers, heterotrophic denitrifiers, and amphitrophy denitrifiers coexisted in the HAD reactor to complete the denitrification process. Retrieved bacterial 16S rRNA gene clones affiliated with uncultured Xanthomonadaceae, Thauera, Thiobacillus, and Chromatiales were dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An S, Tang K, Nemati M (2010) Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: effects of sulphide loading rate and sulphide to nitrate loading ratio. Water Res 44(5):1531–1541

    Article  CAS  PubMed  Google Scholar 

  • An S, Loden B, Nemati M (2012) Evaluation of heterotrophic nitrite removal by a sulphide and acetate oxidizing mixed culture originated from an oil reservoir. J Chem Technol Biotechnol 87(3):410–417

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  • Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, Coleman MA, Wood AP, Kelly DP (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans. J Bacteriol 188(4):1473–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campos JL, Carvalho S, Portela R, Mosquera-Corral A, Méndez R (2008) Kinetics of denitrification using sulphur compounds: effects of S/N ratio, endogenous and exogenous compounds. Bioresour Technol 99(5):1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gomez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95(6):1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ren N, Wang A, Yu Z, Lee D-J (2008) Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor. Appl Microbiol Biotechnol 78(6):1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Chu L, Wang J (2013) Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source. Chemosphere 91(9):1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4(1):33–36

    Article  CAS  Google Scholar 

  • Demirel S, Uyanık İ, Yurtsever A, Çelikten H, Uçar D (2014) Simultaneous bromate and nitrate reduction in water using sulfur-utilizing autotrophic and mixotrophic denitrification processes in a fixed bed column reactor. Clean: Soil Air Water 42(9):1185–1189

    CAS  Google Scholar 

  • Gao DW, Peng YZ, Wu WM (2010) Kinetic model for biological nitrogen removal using shortcut nitrification-denitrification process in sequencing batch reactor. Environ Sci Technol 44(13):5015–5021

    Article  CAS  PubMed  Google Scholar 

  • Ginige MP, Keller J, Blackall LL (2005) Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl Environ Microbiol 71(12):8683–8691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong X, Zhang X, Liu B, Mao Y, Liu Y, Zhao L (2010) Structural differentiation of bacterial communities in indole-degrading bioreactors under denitrifying and sulfate-reducing conditions. Res Microbiol 161(8):687–693

    Article  CAS  PubMed  Google Scholar 

  • Karanasios KA, Vasiliadou IA, Pavlou S, Vayenas DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180(1–3):20–37

    Article  CAS  PubMed  Google Scholar 

  • Koenig A, Liu LH (1996) Autotrophic denitrification of landfill leachate using elemental sulphur. Water Sci Technol 34(5–6):469–476

    CAS  Google Scholar 

  • Koenig A, Liu LH (2001) Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res 35(8):1969–1978

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lee D-J, Wong B-T (2014) Denitrifying sulfide removal by enriched microbial consortium: kinetic diagram. Bioresour Technol 164:386–393

    Article  CAS  PubMed  Google Scholar 

  • Lee D-J, Pan X, Wang A, Ho K-L (2013) Facultative autotrophic denitrifiers in denitrifying sulfide removal granules. Bioresour Technol 132:356–360

    Article  CAS  PubMed  Google Scholar 

  • Li W, Q-l Z, Liu H (2009) Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization–denitrification process. J Hazard Mater 162(2–3):848–853

    Article  CAS  PubMed  Google Scholar 

  • Ligi T, Oopkaup K, Truu M, Preem J-K, Nõlvak H, Mitsch WJ, Mander Ü, Truu J (2014) Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecol Eng 72:56–66

    Article  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mao Y, Xia Y, Zhang T (2013) Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresour Technol 128:703–710

    Article  CAS  PubMed  Google Scholar 

  • Mora M, Fernández M, Gómez J, Cantero D, Lafuente J, Gamisans X, Gabriel D (2015) Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters. Appl Microbiol Biotechnol 99(1):77–87

    Article  CAS  PubMed  Google Scholar 

  • Moraes BS, Foresti E (2012) Determination of the intrinsic kinetic parameters of sulfide-oxidizing autotrophic denitrification in differential reactors containing immobilized biomass. Bioresour Technol 104:250–256

    Article  CAS  PubMed  Google Scholar 

  • Oh SE, Yoo YB, Young JC, Kim IS (2001) Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. J Biotechnol 92(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52(2):253–266

    Article  CAS  PubMed  Google Scholar 

  • Osaka T, Shirotani K, Yoshie S, Tsuneda S (2008) Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Res 42(14):3709–3718

    Article  CAS  PubMed  Google Scholar 

  • Park S, Bae W, Rittmann BE, Kim S, Chung J (2010) Operation of suspended-growth shortcut biological nitrogen removal (SSBNR) based on the minimum/maximum substrate concentration. Water Res 44(5):1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Park S, Yu J, Byun I, Cho S, Park T, Lee T (2011) Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions. Bioresour Technol 102(15):7265–7271

    Article  CAS  PubMed  Google Scholar 

  • Pynaert K, Smets BF, Beheydt D, Verstraete W (2004) Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ Sci Technol 38(4):1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Avila J, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38(14–15):3313–3321

    Article  CAS  PubMed  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New York

    Google Scholar 

  • Shao M-F, Zhang T, Fang H-P (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88(5):1027–1042

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Zhou Y, Wang J (2013) Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresour Technol 131:33–39

    Article  CAS  PubMed  Google Scholar 

  • Sierra-Alvarez R, Beristain-Cardoso R, Salazar M, Gómez J, Razo-Flores E, Field JA (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Res 41(6):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Ceazan ML, Brooks MH (1994) Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl Environ Microbiol 60(6):1949–1955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soto O, Aspe E, Roeckel M (2007) Kinetics of cross-inhibited denitrification of a high load wastewater. Enzym Microb Technol 40:1627–1634

    Article  CAS  Google Scholar 

  • Souza TSO, Foresti E (2013) Sulfide-oxidizing autotrophic denitrification: an evaluation for nitrogen removal from anaerobically pretreated domestic sewage. Appl Biochem Biotechnol 170(5):1094–1103

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tang K, An S, Nemati M (2010) Evaluation of autotrophic and heterotrophic processes in biofilm reactors used for removal of sulphide, nitrate and COD. Bioresour Technol 101(21):8109–8118

    Article  CAS  PubMed  Google Scholar 

  • Torrentó C, Urmeneta J, Otero N, Soler A, Viñas M, Cama J (2011) Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite. Chem Geol 287(1–2):90–101

    Article  Google Scholar 

  • Trois C, Coulon F, de Combret CP, Martins JMF, Oxarango L (2010) Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: focus on the microbiology. J Hazard Mater 181(1–3):1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Van Doan T, Lee TK, Shukla SK, Tiedje JM, Park J (2013) Increased nitrous oxide accumulation by bioelectrochemical denitrification under autotrophic conditions: kinetics and expression of denitrification pathway genes. Water Res 47(19):7087–7097

    Article  PubMed  Google Scholar 

  • Wen J, Pan L, Du L, Mao G (2003) The denitrification treatment of low C/N ratio nitrate-nitrogen wastewater in a gas–liquid–solid fluidized bed bioreactor. Chem Eng J 94(2):155–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51108439, 50778156, and 51008025) and the Natural Science Foundation of Chongqing (cstc2014jcyjA20010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Peng, J., Feng, C. et al. Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis. Appl Microbiol Biotechnol 99, 6527–6536 (2015). https://doi.org/10.1007/s00253-015-6532-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6532-2

Keywords

Navigation