Skip to main content

Advertisement

Log in

Production and applications of rosmarinic acid and structurally related compounds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid; RA) is a naturally occurring hydroxylated compound commonly found in species of the subfamily Nepetoideae of the Lamiaceae and Boraginaceae, such as Rosmarinus officinalis, Salvia officinalis, and Perilla frutescens. RA is biosynthesized from the amino acids l-phenylalanine and l-tyrosine by eight enzymes that include phenylalanine ammonia lyase and cinnamic acid 4-hydroxylase. RA can also be chemically produced by the esterification of caffeic acid and 3,4-dihydroxyphenyllactic acid. RA and its numerous derivatives containing one or two RA with other aromatic moieties are well known and include lithospermic acid, yunnaneic acid, salvianolic acid, and melitric acid. Recently, RA and its derivatives have attracted interest for their biological activities, which include anti-inflammatory, anti-oxidant, anti-angiogenic, anti-tumor, and anti-microbial functions. Clinically, RA attenuates T cell receptor-mediated signaling, attenuates allergic diseases like allergic rhinitis and asthma, and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like symptoms, protects from neurotoxicity, and slows the development of Alzheimer’s disease. These attributes have increased the demand for the biotechnological production and application of RA and its derivatives. The present review discusses the function and application of RA and its derivatives including the molecular mechanisms underlying clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abedini A, Roumy V, Mahieux S, Biabiany M, Standaert-Vitse A, Riviere C, Sahpaz S, Bailleul F, Neut C, Hennebelle T (2013) Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens Poit. (Lamiaceae). Evid Based Complement Alternat Med 2013:604536

    Article  PubMed Central  PubMed  Google Scholar 

  • Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32:203–217

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Ci X, He J, Jiang L, Wei M, Cao Q, Guan M, Xie X, Deng X (2012) Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules 17:3586–3598

    Article  CAS  PubMed  Google Scholar 

  • Costa RS, Carneiro TC, Cerqueira-Lima AT, Queiroz NV, Alcantara-Neves NM, Pontes-de-Carvalho LC, Velozo Eda S, Oliveira EJ, Figueiredo CA (2012) Ocimum gratissimum Linn. and rosmarinic acid, attenuate eosinophilic airway inflammation in an experimental model of respiratory allergy to Blomia tropicalis. Int Immunopharmacol 13:126–134

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Bailly F, Mbemba G, Mouscadet JF, Debyser Z, Witvrouw M, Cotelle P (2008) Reaction of rosmarinic acid with nitrite ions in acidic conditions: discovery of nitro- and dinitrorosmarinic acids as new anti-HIV-1 agents. J Med Chem 51:2575–2579

    Article  CAS  PubMed  Google Scholar 

  • Ellis BE, Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem J 118:291–297

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, Brunelleschi S, Lombardi G (2009) Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol 157:1072–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fedoreyev SA, Veselova MV, Krivoschekova OE, Mischenko NP, Denisenko VA, Dmitrenok PS, Glazunov VP, Bulgakov VP, Tchernoded GK, Zhuravlev YN (2005) Caffeic acid metabolites from Eritrichium sericeum cell cultures. Planta Med 71:446–451

    Article  CAS  PubMed  Google Scholar 

  • Hamaguchi T, Ono K, Murase A, Yamada M (2009) Phenolic compounds prevent Alzheimer's pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol 175:2557–2565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hippolyte I, Marin B, Baccou JC, Jonard R (1992) Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Hauck C, Yum MY, Rizshsky L, Widrlechner MP, McCoy JA, Murphy PA, Dixon PM, Nikolau BJ, Birt DF (2009) Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages. J Agric Food Chem 57:10579–10589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ito H, Miyazaki T, Ono M, Sakurai H (1998) Antiallergic activities of rabdosiin and its related compounds: chemical and biochemical evaluations. Bioorg Med Chem 6:1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Iuvone T, De Filippis D, Esposito G, D'Amico A, Izzo AA (2006) The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther 317:1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Jang AH, Kim TH, Kim GD, Kim JE, Kim HJ, Kim SS, Jin YH, Park YS, Park CS (2011) Rosmarinic acid attenuates 2,4-dinitrofluorobenzene-induced atopic dermatitis in NC/Nga mice. Int Immunopharmacol 11:1271–1277

    Article  CAS  PubMed  Google Scholar 

  • Jiang RW, Lau KM, Hon PM, Mak TC, Woo KS, Fung KP (2005) Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr Med Chem 12:237–246

    Article  CAS  PubMed  Google Scholar 

  • Jiang WL, Chen XG, Qu GW, Yue XD, Zhu HB, Tian JW, Fu FH (2009) Rosmarinic acid protects against experimental sepsis by inhibiting proinflammatory factor release and ameliorating hemodynamics. Shock 32:608–613

    Article  CAS  PubMed  Google Scholar 

  • Jin CJ, Yu SH, Wang XM, Woo SJ, Park HJ, Lee HC, Choi SH, Kim KM, Kim JH, Park KS, Jang HC, Lim S (2014) The effect of lithospermic acid, an antioxidant, on development of diabetic retinopathy in spontaneously obese diabetic rats. PLoS One 9:e98232

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang MA, Yun SY, Won JW (2003) Rosmarinic acid inhibits Ca2+-dependent pathways of T-cell antigen receptor-mediated signaling by inhibiting the PLC-gamma 1 and Itk activity. Blood 101:3534–3542

    Article  CAS  PubMed  Google Scholar 

  • Kang ES, Lee GT, Kim BS, Kim CH, Seo GH, Han SJ, Hur KY, Ahn CW, Ha H, Jung M, Ahn YS, Cha BS, Lee HC (2008) Lithospermic acid B ameliorates the development of diabetic nephropathy in OLETF rats. Eur J Pharmacol 579:418–425

    Article  CAS  PubMed  Google Scholar 

  • Karthik D, Viswanathan P, Anuradha CV (2011) Administration of rosmarinic acid reduces cardiopathology and blood pressure through inhibition of p22phox NADPH oxidase in fructose-fed hypertensive rats. J Cardiovasc Pharmacol 58:514–521

    Article  CAS  PubMed  Google Scholar 

  • Khojasteh A, Mirjalili MH, Hidalgo D, Corchete P, Palazon J (2014) New trends in biotechnological production of rosmarinic acid. Biotechnol Lett 36:2393–2406

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Kim HR, Woo ER, Hong ST, Chae HJ, Chae SW (2005) Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem Pharmacol 70:1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Lee JJ, Lee JS, Park YM, Yoon TR (2008) Rosmarinic acid down-regulates the LPS-induced production of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 alpha (MIP-1 alpha) via the MAPK pathway in bone-marrow derived dendritic cells. Mol Cells 26:583–589

    CAS  PubMed  Google Scholar 

  • Kohda H, Takeda O, Tanaka S, Yamasaki K, Yamashita A, Kurokawa T, Ishibashi S (1989) Isolation of inhibitors of adenylate cyclase from dan-shen, the root of Salvia miltiorrhiza. Chem Pharm Bull (Tokyo) 37:1287–1290

    Article  CAS  Google Scholar 

  • Lee J, Jung E, Kim Y, Lee J, Park J, Hong S, Hyun CG, Park D, Kim YS (2006) Rosmarinic acid as a downstream inhibitor of IKK-beta in TNF-alpha-induced upregulation of CCL11 and CCR3. Br J Pharmacol 148:366–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HJ, Jeong YI, Lee TH, Jung ID, Lee JS, Lee CM, Kim JI, Joo H, Lee JD, Park YM (2007) Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Biochem Pharmacol 73:1412–1421

    Article  PubMed  Google Scholar 

  • Lee HJ, Cho HS, Park E, Kim S, Lee SY, Kim CS, Kim do K, Kim SJ, Chun HS (2008a) Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology 250:109–115

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Jung E, Koh J, Kim YS, Park D (2008b) Effect of rosmarinic acid on atopic dermatitis. J Dermatol 35:768–771

    Article  CAS  PubMed  Google Scholar 

  • Lee BW, Chun SW, Kim SH, Lee Y, Kang ES, Cha BS, Lee HC (2011) Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1. Toxicol Appl Pharmacol 252:47–54

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Asai M, Jeon S, Iimura T, Yonezawa T, Cha B, Woo J, Yamaguchi A (2014) Rosmarinic acid exerts an anti-osteoporotic effect in the RANKL-induced mouse model of bone loss by promotion of osteoblastic differentiation and inhibition of osteoclastic differentiation. Mol Nutr Food Res. doi:10.1002/mnfr.201400164

    Google Scholar 

  • Liu XY, Chen RH, Shang YJ, Jiao BH, Huang CG (2008) Lithospermic acid as a novel xanthine oxidase inhibitor has anti-inflammatory and hypouricemic effects in rats. Chem Biol Interact 176:137–142

    Article  CAS  PubMed  Google Scholar 

  • Lu YR, Foo LY (1999) Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 51:91–94

    Article  CAS  Google Scholar 

  • Lu XL, Hao L, Wang F, Huang C, Wu SW (2013) Molecular cloning and overexpression of the tyrosine aminotransferase (TAT) gene leads to increased rosmarinic acid yield in Perilla frutescens. Plant Cell Tissue Organ Cult 115:69–83

    Article  CAS  Google Scholar 

  • Lucarini R, Bernardes WA, Ferreira DS, Tozatti MG, Furtado R, Bastos JK, Pauletti PM, Januario AH, Silva ML, Cunha WR (2013) In vivo analgesic and anti-inflammatory activities of Rosmarinus officinalis aqueous extracts, rosmarinic acid and its acetyl ester derivative. Pharm Biol 51:1087–1090

    Article  CAS  PubMed  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidant-a review. Biotechnol Adv 26:548–560

    Article  CAS  PubMed  Google Scholar 

  • Moon DO, Kim MO, Lee JD, Choi YH, Kim GY (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappa B activation and ROS generation in human leukemia U937 cells. Cancer Lett 288:183–191

    Article  CAS  PubMed  Google Scholar 

  • Oh HA, Park CS, Ahn HJ, Park YS, Kim HM (2011) Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions. Exp Biol Med (Maywood) 236:99–106

    Article  CAS  Google Scholar 

  • Onrubia M, Cusido RM, Ramirez K, Hernandez-Vazquez L, Moyano E, Bonfill M, Palazon J (2013) Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem 20:880–891

    CAS  PubMed  Google Scholar 

  • Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T (2002) Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Radic Biol Med 33:798–806

    Article  CAS  PubMed  Google Scholar 

  • Osakabe N, Yasuda A, Natsume M, Yoshikawa T (2004) Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25:549–557

  • Pavlov AI, Georgiev MI, Panchev IN, Ilieva MP (2005) Optimization of rosmarinic acid production by Lavandula vera MM plant cell suspension in a laboratory bioreactor. Biotechnol Prog 21:394–396

    Article  CAS  PubMed  Google Scholar 

  • Perez-Fons L, Garzon MT, Micol V (2010) Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J Agric Food Chem 58:161–171

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Hausler E, Meinhard J, Karwatzki B, Gertlowski C (1994) The biosynthesis of rosmarinic acid in suspension-cultures of Coleus-Blumei. Plant Cell Tissue Organ Cult 38:171–179

    Article  CAS  Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hucherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679

    Article  CAS  PubMed  Google Scholar 

  • Razzaque A, Ellis BE (1977) Rosmarinic acid production in Coleus cell cultures. Planta 137:287–291

    Article  CAS  PubMed  Google Scholar 

  • Sanbongi C, Takano H, Osakabe N, Sasa N, Natsume M, Yanagisawa R, Inoue KI, Sadakane K, Ichinose T, Yoshikawa T (2004) Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin Exp Allergy 34:971–977

    Article  CAS  PubMed  Google Scholar 

  • Scarpati ML, Oriente G (1958) Isolamento e costituzione dell` acido rosmarinico (dal Rosmarinus off.). Ric Sci 28:2329–2333

    CAS  Google Scholar 

  • Scheckel KA, Degner SC, Romagnolo DF (2008) Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J Nutr 138:2098–2105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sotnikova R, Okruhlicova L, Vlkovicova J, Navarova J, Gajdacova B, Pivackova L, Fialova S, Krenek P (2013) Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta. J Pharm Pharmacol 65:713–723

    Article  CAS  PubMed  Google Scholar 

  • Suriyarak S, Gibis M, Schmidt H, Villeneuve P, Weiss J (2014) Antimicrobial mechanism and activity of dodecyl rosmarinate against Staphylococcus carnosus LTH1502 as influenced by addition of salt and change in pH. J Food Prot 77:444–452

    Article  CAS  PubMed  Google Scholar 

  • Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A (2007) Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 51:3367–3370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42:431–434

    Article  CAS  Google Scholar 

  • Tanaka T, Nishimura A, Kouno I, Nonaka G, Young TJ (1996) Isolation and characterization of Yunnaneic acids A-D, four novel caffeic acid metabolites from Salvia yunnanensis. J Nat Prod 59:843–849

    Article  CAS  Google Scholar 

  • Tanaka T, Nishimura A, Kouno I, Nonaka G, Yang CR (1997) Four new caffeic acid metabolites, yunnaneic acids E-H, from Salvia yunnanensis. Chem Pharm Bull 45:1596–1600

    Article  CAS  Google Scholar 

  • Tewtrakul S, Miyashiro H, Nakamura N, Hattori M, Kawahata T, Otake T, Yoshinaga T, Fujiwara T, Supavita T, Yuenyongsawad S, Rattanasuwon P, Dej-Adisai S (2003) HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytother Res 17:232–239

    Article  CAS  PubMed  Google Scholar 

  • Vladimir-Knezevic S, Blazekovic B, Kindl M, Vladic J, Lower-Nedza AD, Brantner AH (2014) Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 19:767–782

    Article  PubMed  Google Scholar 

  • Vostalova J, Zdarilova A, Svobodova A (2010) Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch Dermatol Res 302:171–181

    Article  PubMed  Google Scholar 

  • Wei WS, Humphrey AE (1991) Production of rosmarinic acid from perfusion culture of Anchusa officinalis in a membrane-aerated bioreactor. Biotechnol Lett 13:889–892

    Article  Google Scholar 

  • Weremczuk-Jezyna I, Grzegorczyk-Karolak I, Frydrych B, Krolicka A, Wysokinska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35:2095–2103

    Article  CAS  Google Scholar 

  • Winter PM, Dung NM, Loan HT, Kneen R, Wills B, Thu LT, House D, White NJ, Farrar JJ, Hart CA, Solomon T (2004) Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J Infect Dis 190:1618–1626

    Article  CAS  PubMed  Google Scholar 

  • Wu WY, Wang YP (2012) Pharmacological actions and therapeutic applications of Salvia miltiorrhiza depside salt and its active components. Acta Pharmacol Sin 33:1119–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu HL, Li YH, Lin YH, Wang R, Li YB, Tie L, Song QL, Guo DA, Yu HM, Li XJ (2009) Salvianolic acid B protects human endothelial cells from oxidative stress damage: a possible protective role of glucose-regulated protein 78 induction. Cardiovasc Res 81:148–158

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Zhang L, Gao S, Saechao S, Di P, Chen J, Chen W (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS One 6:e29713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Williams JW, Bremer EG, Finnegan A, Chong AS (1995) Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J Biol Chem 270:12398–12403

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Xu G, Liu L, Xu D, Liu J (2010a) Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation-reduction pathway in Ls174-T cells. J Cell Biochem 111:370–379

    Article  CAS  PubMed  Google Scholar 

  • Xu YC, Jiang ZJ, Ji GA, Liu JW (2010b) Inhibition of bone metastasis from breast carcinoma by rosmarinic acid. Planta Med 76:956–962

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Shi M, Ng J, Wu HY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170:853–858

    Article  CAS  Google Scholar 

  • Yang EJ, Ku SK, Lee W, Lee S, Lee T, Song KS, Bae JS (2013) Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. J Cell Physiol 228:975–982

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama H, Matsuno K, Matsushima K (2005) Migration of dendritic cells. Int J Hematol 81:204–207

    Article  CAS  PubMed  Google Scholar 

  • Zdarilova A, Svobodova A, Simanek V, Ulrichova J (2009) Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts. Toxicol In Vitro 23:386–392

    Article  CAS  PubMed  Google Scholar 

  • Zenk MH, El-Shagi H, Ulbrich B (1977) Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften 64:585–586

    Article  CAS  Google Scholar 

  • Zhang S, Yan Y, Wang B, Liang Z, Liu Y, Liu F, Qi Z (2014) Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. J Biosci Bioeng 117:645–651

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Kyung Hee University in 2013(KHU-20130545).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheung-Seog Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, GD., Park, Y.S., Jin, YH. et al. Production and applications of rosmarinic acid and structurally related compounds. Appl Microbiol Biotechnol 99, 2083–2092 (2015). https://doi.org/10.1007/s00253-015-6395-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6395-6

Keywords

Navigation