Skip to main content
Log in

In vitro and in vivo characterization of a new recombinant antimicrobial peptide, MP1102, against methicillin-resistant Staphylococcus aureus

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Currently, more antimicrobial drug candidates are urgently needed to combat the rise in drug-resistance among pathogenic microbes. A new antimicrobial peptide, MP1102, a variant of NZ2114, was designed, evaluated, and overexpressed in Pichia pastoris. The total secreted protein in cultures reached 695 mg/l, and the concentration of the recombinant MP1102 (rMP1102) was 292 mg/l. rMP1102 was purified from the fermentation supernatant by one-step cation exchange chromatography to obtain a yield of 197.1 mg/l with 96.4 % purity. rMP1102 exhibited potent activity against Gram-positive bacteria, and its minimum inhibitory concentrations (MICs) for four Staphyloccocus aureus (S. aureus) strains ranged from 0.028 to 0.11 μM, and it had stronger activity (MIC = 0.04 to 0.23 μM) to 20 clinical isolates of MRSA (cMRSA) than rNZ2114 (MIC = 0.11 to 0.90 μM). rMP1102 was shown to kill over 99.9 % of tested S. aureus cells within 6 h when treated at one, two, and four times its MIC and over 90 % of S. aureus cells within 12 h at concentrations of 5, 10, and 20 mg/kg in a mouse thigh infection model. The higher sensitivity of MRSA to MP1102 than to its parental peptide, NZ2114, indicated by this initial pharmacodynamic analysis suggests a possible difference in the killing mechanism of these two molecules. rMP1102 caused less than 0.05 % hemolytic activity at 128 μg/ml and exhibited good thermostability from 20 to 80 °C, with its highest activity being observed at pH 8.0. These results suggest that this yeast expression system is feasible for large-scale production, and rMP1102 exerted stronger activity against S. aureus than NZ2114 via a different mechanism and exhibited potential as a new antimicrobial agent for S. aureus, especially MRSA infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andes D, Craig W, Nielsen LA, Kristensen HH (2009) In vivo pharmacodynamic characterization of a novel plectasin antibiotic, NZ2114, in a murine infection model. Antimicrob Agents Chemother 53:3003–3009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andra J, Jakovkin I, Grotzinger J, Hecht O, Krasnosdembskaya AD, Goldmann T, Gutsmann T, Leippe M (2008) Structure and mode of action of the antimicrobial peptide arenicin. Biochem J 410:113–122

    Article  PubMed  Google Scholar 

  • Aoki W, Kuroda K, Ueda M (2012) Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng 114:365–370

    Article  CAS  PubMed  Google Scholar 

  • Appelbaum PC (2012) 2012 and beyond: potential for the start of a second pre-antibiotic era? J Antimicrob Chemother 67:2062–2068

    Article  CAS  PubMed  Google Scholar 

  • Blazyk J, Wiegand R, Klein J, Hammer J, Epand RM, Epand RF, Maloy WL, Kari UP (2001) A novel linear amphipathic beta-sheet cationic antimicrobial peptide with enhanced selectivity for bacterial lipids. J Biol Chem 276:27899–27906

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg LO, Merres J, Albrecht LJ, Varoga D, Pufe T (2012) Antimicrobial peptides: multifunctional drugs for different applications. Polymers 4:539–560

    Article  Google Scholar 

  • Brinch KS, Tulkens PM, Van Bambeke F, Frimodt-Moller N, Hoiby N, Kristensen HH (2010) Intracellular activity of the peptide antibiotic NZ2114: studies with Staphylococcus aureus and human THP-1 monocytes, and comparison with daptomycin and vancomycin. J Antimicrob Chemother 65:1720–1724

    Article  CAS  PubMed  Google Scholar 

  • Celenza G, Segatore B, Setacci D, Bellio P, Brisdelli F, Piovano M, Garbarino JA, Nicoletti M, Perilli M, Amicosante G (2012) In vitro antimicrobial activity of pannarin alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine 19:596–602

    Article  CAS  PubMed  Google Scholar 

  • Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chambers HF, Kennedy S (1990) Effects of dosage, peak and trough concentrations in serum, protein binding, and bactericidal rate on efficacy of teicoplanin in a rabbit model of endocarditis. Antimicrob Agents Chemother 34:510–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho J, Lee DG (2011) The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism. Biochem Biophys Res Commun 405:422–427

    Article  CAS  PubMed  Google Scholar 

  • Cruz J, Ortiz C, Guzman F, Cardenas C, Fernandez-Lafuente R, Torres R (2014) Design and activity of novel lactoferrampin analogues against O157:H7 enterohemorrhagic Escherichia coli. Biopolymers 101:319–328

    Article  CAS  PubMed  Google Scholar 

  • Derache C, Meudal H, Aucagne V, Mark KJ, Cadène M, Delmas AF, Lalmanach AC, Landon C (2012) Initial insights into structure-activity relationships of avian defensins. J Biol Chem 287:7746–7755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99:7687–7692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freire-Moran L, Aronsson B, Manz C, Gyssens IC, So AD, Monnet DL, Cars O, Group EEW (2011) Critical shortage of new antibiotics in development against multidrug-resistant bacteria-time to react is now. Drug Resist Updat 14:118–124

    Article  PubMed  Google Scholar 

  • Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874–885

    Article  PubMed  Google Scholar 

  • Hughes CC, Fenical W (2010) Antibacterials from the sea. Chemistry 16:12512–12525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DG, Hahm K, Shin SY (2004) Structure and fungicidal activity of a synthetic antimicrobial peptide, P18, and its truncated peptides. Biotechnol Lett 26:337–341

    Article  CAS  PubMed  Google Scholar 

  • Lee JU, Kang DI, Zhu WL, Shin SY, Hahm KS, Kim Y (2007) Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative. Biopolymers 88:208–216

    Article  CAS  PubMed  Google Scholar 

  • Louie A, Kaw P, Liu W, Jumbe N, Miller MH, Drusano GL (2001) Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother 45:845–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindsay JA, Holden MT (2004) Staphylococcus aureus: superbug, super genome? Trends Microbiol 12:378–385

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Wang R, Liao W, Han Z, Liu S (2009) Identification and characterization of a novel antibacterial peptide, avian beta-defensin 2 from ducks. J Microbiol 47:610–618

    Article  CAS  PubMed  Google Scholar 

  • Mao R, Teng D, Wang X, Xi D, Zhang Y, Hu X, Yang Y, Wang J (2013) Design, expression, and characterization of a novel targeted plectasin against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 97:3991–4002

    Article  CAS  PubMed  Google Scholar 

  • Mataraci E, Dosler S (2012) In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 56:6366–6371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meade KG, Cahalane S, Narciandi F, Cormican P, Lloyd AT, O’Farrelly C (2008) Directed alteration of a novel bovine beta-defensin to improve antimicrobial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents 32:392–397

    Article  CAS  PubMed  Google Scholar 

  • Mihajlovic M, Lazaridis T (2010) Antimicrobial peptides bind more strongly to membrane pores. Biochim Biophys Acta 1798:1494–1502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon JY, Henzler-Wildman KA, Ramamoorthy A (2006) Expression and purification of a recombinant LL-37 from Escherichia coli. Biochim Biophys Acta 1758:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard C, Sandvang D, Frimodt-Moller N, Kristensen HH (2009) High cerebrospinal fluid (CSF) penetration and potent bactericidal activity in CSF of NZ2114, a novel plectasin variant, during experimental pneumococcal meningitis. Antimicrob Agents Chemother 53:1581–1585

    Article  PubMed Central  PubMed  Google Scholar 

  • Otter JA, French GL (2010) Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Europe. Lancet Infect Dis 10:227–239

    Article  PubMed  Google Scholar 

  • Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi T, Tabata F, Iwata Y, Hanzawa H, Sugawara M, Ohya S (1996) Hydrophilicity of quinolones is not an exclusive factor for decreased activity in efflux-mediated resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 40:1835–1842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian ZG, Dong TT, Teng D, Yang YL, Wang JH (2009) Design and characterization of novel hybrid peptides from LFB15(W4,10), HP(2-20), and cecropin A based on structure parameters by computer-aided method. Appl Microbiol Biotechnol 82:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Waterhous DV, Johnson WC Jr (1994) Importance of environment in determining secondary structure in proteins. Biochemistry 33:2121–2128

    Article  CAS  PubMed  Google Scholar 

  • Xi D, Teng D, Wang X, Mao R, Yang Y, Xiang W, Wang J (2013) Design, expression and characterization of the hybrid antimicrobial peptide LHP7, connected by a flexible linker, against Staphylococcus and Streptococcus. Process Biochem 48:453–461

    Article  CAS  Google Scholar 

  • Xie Y, He Y, Gehring A, Hu Y, Li Q, Tu SI, Shi X (2011) Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS ONE 6:e28276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong YQ, Hady WA, Deslandes A, Rey A, Fraisse L, Kristensen HH, Yeaman MR, Bayer AS (2011) Efficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:5325–5330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Tian Z, Teng D, Zhang J, Wang J (2009) High-level production of a candidacidal peptide lactoferrampin in Escherichia coli by fusion expression. J Biotechnol 139:326–331

    Article  CAS  Google Scholar 

  • Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta 1758:1436–1449

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang YL, Teng D, Tian ZG, Wang SR, Wang JH (2011) Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr Purif 78:189–196

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Teng D, Mao R, Wang X, Xi D, Hu X, Wang J (2014) High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Appl Microbiol Biotechnol 98:681–694

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 31372346 and No. 31302004), the Project of the National Support Program for Science and Technology in China (No. 2013BAD10B02 and No. 2011BAD26B02), the Special Fund for Agro-scientific Research in the Public Interest in China (No. 201403047), and the AMP Direction of National Innovation Program of Agricultural Science and Technology in CAAS (2013–2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Additional information

Yong Zhang and Da Teng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Teng, D., Wang, X. et al. In vitro and in vivo characterization of a new recombinant antimicrobial peptide, MP1102, against methicillin-resistant Staphylococcus aureus . Appl Microbiol Biotechnol 99, 6255–6266 (2015). https://doi.org/10.1007/s00253-015-6394-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6394-7

Keywords

Navigation